首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We originally demonstrate the use of an AlGaInAs periodic quantum-well absorber to achieve a quasi-continuous-wave (QCW) diode-pumped passively Q-switched Nd:YVO4 laser with an intracavity optical parametric oscillator (OPO). With a diode-pumping energy of 35 mJ, the output pulse energy and the pulse width at 1573 nm are found to be 1.58 mJ and 26 ns, respectively. The pulse repetition rate can be up to 100 Hz with the overall OPO beam quality M2 factor to be better than 1.5.  相似文献   

2.
The output optimization of a high-repetition-rate diode-pumped Q-switched intracavity optical parametric oscillator at 1573 nm with a type-II non-critically phase-matched x-cut KTP is experimentally and theoretically studied. The optimum output reflectivity is found to be 85–90% for the maximum average power. The average conversion efficiency from diode-laser input power to OPO signal output power is up to 15% at a pulse repetition of 80 kHz. However, the optimum output reflectivity for the maximum peak power is found to be 60–70%; the overall peak power amounts to 3–4 kW at a pulse repetition of 80 kHz. PACS 42.60.Gd;42.65.Yj;42.55.Xi  相似文献   

3.
A diode-end-pumped simultaneously Q-switched and mode-locked intracavity frequency doubled Nd:GdVO4/LBO red laser with an acousto-optic Q-switch was realized. The maximum red laser output power of 250 mW was obtained at the incident pump power of 8.3 W and the repetition rate of 10 kHz. At 5 kHz, the maximum mode-locking modulation depth of about 80% was achieved with the Q-switched pulse width of 440 ns. The red mode-locked pulse inside the Q-switched pulse had a repetition rate of 115 MHz, its average pulse width was estimated to be about 350 ps.  相似文献   

4.
An efficient diode-pumped passively Q-switched Nd:GdVO4/Cr4+:YAG laser was employed to generate a high-repetition-rate, high-peak-power eye-safe laser beam with an intracavity optical parametric oscillator (OPO) based on a KTP crystal. The conversion efficiency for the average power is 8.3% from pump diode input to OPO signal output and the slope efficiency is up to 10%. At an incident pump power of 14.5 W, the compact intracavity OPO cavity, operating at 46 kHz, produces average powers at 1571 nm up to 1.2 W with a pulse width as short as 700 ps. PACS 42.60.Gd; 42.65.Yj; 42.55.X  相似文献   

5.
A non-critically phase-matched KTiOPO4 optical parametric oscillator (OPO) intracavity pumped by a laser diode end-pumped acousto-optically Q-switchedNd:YAG laser is experimentally demonstrated. The highest average power is obtained at the pulse repetition rate (PRR) of around 15 kHz, which is different from the widely reported Nd:YVO4 laser pumped OPO in which the highest average power is obtained at a very high PRR, e.g. 80 kHz. With an incident laser diode power of 6.93 W and a pulse repetition rate of 15 kHz, an average signal power of 0.72 W is obtained with a peak power of 7.7 kW and an optical-to-optical conversion efficiency of 10.4%. PACS 42.65.Yj; 42.60.Gd; 42.55.Xi  相似文献   

6.
A diode-end-pumped actively Q-switched eye-safe intracavity Raman laser at 1532 nm is demonstrated, with Nd:YVO4 as the laser crystal and BaWO4 as the Raman crystal. The highest average power of 1.5 W is obtained, with an incident pump of 12 W and a pulse repetition rate of 35 kHz, corresponding to a diode-to-Stokes conversion efficiency of 12.5%.  相似文献   

7.
This work presents experimental results concerning an actively Q-switched intracavity frequency-doubled Nd:LuVO4/LBO green laser with an acousto-optic modulator operated at the wavelength of 0.53 μm. The green average output power of 2.8 W was obtained at a pump power of 16.3 W and a pulse repetition rate of 20 kHz, resulting in an optical conversion efficiency of 17%. When the pulse repetition rate is operated at 5 kHz, the shortest pulse width and the highest peak power at 0.53 μm were measured to be 26.5 ns and 8.43 kW, respectively.  相似文献   

8.
We demonstrate an efficient and eye-safe wavelength intracavity optical parametric oscillator (OPO),based on a KTP crystal inside a Q-switched Nd:YVO4 laser end pumped by a fiber-coupled diode laser. Inthe acousto-optic Q-switched operation with the pulse repetition rate of 10 kHz, a 1572-nm eye-safe laser with the average power of 237 mW at the incident pump power of 5.64 W is obtained. Under the pulse repetition rate of 5 kHz, the signal light with pulse width of 2 ns and peak power of 18.5 kW is achieved.The conversion efficiency of the average power is 4.2% from pump diode to OPO signal output and thesignal pulse duration is about 13 times shorter than that of the depleted pump light.  相似文献   

9.
A diode-laser-array end-pumped acousto-optically Q-switched intracavity frequency-doubled Nd:GdVO4/KTP green laser, formed with a three-mirror folded resonator, has been demonstrated. With 15 W of pump power incident upon the Nd:GdVO4 crystal, a maximum average green output power of 3.75 W was obtained at 50 kHz of pulse repetition frequency, giving an optical conversion efficiency of 25%, whereas the effective intracavity frequency-doubling efficiency was determined to be 72%. At the incident pump power of 12.8 W, the shortest laser pulse was achieved at a pulse repetition rate of 10 kHz, the resulting pulse width, single pulse energy, and peak power were measured to be 35 ns, 108 μJ, and 3.1 kW, respectively. Received: 18 May 2000 / Published online: 20 September 2000  相似文献   

10.
A diode-pumped high-repetition-rate acousto-optically (A-O) Q-switched Nd:YVO4 laser operating at 914 nm was reported in this paper. Employing a compact linear laser cavity, at an operating repetition rate of 10 kHz, a maximum average output power of 2.2 W 914 nm laser was obtained at an incident pump power of 45.3 W, corresponding to an optical conversion efficiency of 4.9% and a slope efficiency of 8.8%. Minimum pulse width of 24 ns and maximum peak power of 8.0 kW of 914 nm laser was also achieved at an incident pump power of 40.8 W. To the best of our knowledge, this is the highest peak power of 914 nm laser at 10 kHz by far. Moreover, the highest operating repetition rate of pulsed 914 nm can even reach 100 kHz.  相似文献   

11.
生卫东  刘宏伟 《光学学报》1995,15(9):195-1198
报道了用两个1.5W激光二极管偏振耦合端面泵浦的声光调Q内腔倍频Nd:YAG激光器。输出532nm绿光重复频率1KHz时,最大峰值功率为2.23KW,最窄脉宽为18ns,平均功率40mW。最高重复频率30KHz。重复频率15kHZ时,最高平均率128mW。对声光调Q内倍频Nd:YAG激光器的动态特性进行了理论分析及计算。  相似文献   

12.
An efficient singly resonant intracavity optical parametric oscillator (OPO) is demonstrated based on a type II non-critically phase-matched KTiOAsO4 (KTA) crystal. A diode-end-pumped acousto-optically (AO) Q-switched Nd:YAG laser is used as the pumping source. Under a LD power of 7.43 W and a pulse repetition rate of 15 kHz, we obtain a signal power of 0.93 W, corresponding to an optical-to-optical conversion efficiency of 12.5%. This is the highest efficiency reported for the intracavity KTA OPOs. Theoretical analysis on the power characteristics of the OPO is performed. It is proved from the theoretical results that the reflectivity of 63% at the signal wavelength (1535 nm) is a good selection for high average power and high conversion efficiency. PACS  42.65.Yj; 42.60.Gd; 42.55.Xi  相似文献   

13.
A diode-pumped passively Q-switched mode-locked (QML) intracavity frequency-doubled Nd:GdVO4/KTP green laser with a semiconductor saturable absorber is presented. Nearly 100% modulation depth for the mode-locked green pulses can be achieved at any pump power over 1.92 W. The width of the mode-locked green pulse was estimated to be about 150 ps. The mode-locked pulse interval within the Q-switched envelope of 320 ns and the repetition rate of 97.5 kHz were obtained, at an incident pump power of 4.4 W. The repetition rate of the mode-locked green pulses inside the Q-switched envelope was 140 MHz.  相似文献   

14.
We report a high conversion efficiency Q-switched Nd:YVO_4/KTiOAsO_4(KTA) intracavity optical parametric oscillator(IOPO) operating near 3.5 um based on direct 880 nm laser diode(LD) pumping. A maximum average idler output power of 2.6 W with a pulse width of about 7.9 ns is achieved under an absorbed LD power of 45.4 W at a pulse repetition rate(PRR) of 10 kHz. The maximum optical-optical conversion efficiency from LD power to OPO mid-infrared(MIR) output of 6.74% is achieved. To our knowledge, this is the highest conversion efficiency for a KTA-IOPO by exploiting a Q-switched laser as the parent fundamental pump source. The beam quality factors M~2 of the MIR beam at the full output power with a PRR of 10 kHz are within 2.12 in both the horizontal and vertical directions, indicating a near Gaussian mode.  相似文献   

15.
在半导体泵浦被动调QNd∶GdVO4/Cr4+∶YAG激光腔内,利用KTP晶体实现了高重复频率的内腔OPO的稳定运转。OPO其信号光转换效率为7%,斜效率为10.3%。当泵浦功率7.3W时,可获得平均功率为0.48W,重频15kHz,脉宽6ns,峰值功率达13KW的1570nm激光输出。  相似文献   

16.
With a non-critically phase-matched KTA crystal, a high-power intracavity optical parametric oscillator (IOPO) driven by a diode-side-pumped acousto-optically Q-switched Nd:YAG laser has been realized. The maximum average output power of 13.6 W at the signal wavelength of 1534 nm and 3 W at the idler wavelength of 3472.7 nm were obtained with the repetition rate of 18 kHz, giving the optical-optical conversion efficiency of about 5.7% from diode-power at 808 nm to OPO signal output, which was the highest conversion efficiency for intracavity KTA OPO with diode-side-pumping configurations to our best knowledge. At the highest output power of 13.6 W, the signal pulse duration of 5.46 ns was obtained, corresponding to the single pulse energy of 756 μJ and peak power of 138 kW, respectively.  相似文献   

17.
The efficient dual-wavelength oscillation at 1064 and 1342 nm in the passively Q-switched laser based on Nd:YVO4/V3+:YAG is successfully obtained, as demonstrated in this paper. A total average output power of 2.2 W is obtained with 1.3 W for 1064 nm and 0.9 W for 1342 nm under the incident pump power of 7.7 W, corresponding to a total optical-optical conversion efficiency of 28.2%. The pulse widths are 58 and 54 ns for 1064 and 1342 nm, respectively, with the repetition rate of 89 kHz. Moreover, a rate equation model considering the Gaussian spatial distributions of the intracavity photon density and the initial population-inversion density is presented to characterize the dual-wavelength passive Q-switching operation.  相似文献   

18.
An AlGaInAs quantum-well structure grown on a Fe-doped InP transparent substrate is developed to be a gain medium in a high-peak-power nanosecond laser at 1570 nm. Using an actively Q-witched 1064 nm laser to pump the gain chip, an average output power of 135 mW is generated at a pulse repetition rate of 30 kHz and an average pump power of 1.25 W. At a pulse repetition rate of 20 kHz, the peak output power is up to 290 W at a peak pump power of 2.3 kW.  相似文献   

19.
We report a 880 nm LD pumped passive Q-switched and mode-locked Nd:YVO4 laser using a single-walled carbon nanotube saturable absorber (SWCNT-SA). At the pump power of 7.78 W, the average out-put power of 330 mW of Q-switched and mode-locked laser with optical conversion efficiency of 4.2% was generated. The repetition rate and pulse width of the Q-switched envelope were 33 kHz and 5.6 μs, respectively. The repetition rate and pulse energy of the mode-locked pulse within the Q-switched envelope were 80 MHz and 4.1 nJ, respectively.  相似文献   

20.
We derive the threshold pump intensity for a singly resonant intracavity optical parametric oscillator (IOPO)based on a temporal coupled field model.Particular attention is Paid to the dependence of the intracavity singly resonant OPO(SRO)threshold intensity on the signal wave output coupling.Meanwhile,a Nd:YAG laser pumped KTiOPO4(KTP)IOPO for eye-safe laser output is studied experimentally.The experiment is performed with four signal wave output reflectivities of 60%,70%,80%,and 90%,respectively.The measured values are in good agreement with the theoretical results.With an output coupler reflectivity of 80%,a peak power of 70 kW at 1572 nm has been obtained at a repetition rate of 3.5 kHz.The pulse width is 4.9 ns.Such investigation is helpful to identifying suitable operational regime of low pump intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号