首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Newly designed and prepared vanadium complexes bearing anionic pyrrole‐based PNP‐type pincer and aryloxy ligands were found to work as effective catalysts for the direct conversion of molecular dinitrogen into ammonia and hydrazine under mild reaction conditions. This is the first successful example of vanadium‐catalyzed dinitrogen reduction under mild reaction conditions.  相似文献   

2.
The direct formation of ammonia from molecular dinitrogen under mild reaction conditions was achieved by using new cobalt dinitrogen complexes bearing an anionic PNP‐type pincer ligand. Up to 15.9 equivalents of ammonia were produced based on the amount of catalyst together with 1.0 equivalent of hydrazine (17.9 equiv of fixed nitrogen atoms).  相似文献   

3.
《Comptes Rendus Chimie》2015,18(7):776-784
Synthesis of transition metal–dinitrogen complexes and stoichiometric transformations of their coordinated dinitrogen into ammonia and hydrazine have so far been well investigated in order to achieve a novel nitrogen fixation under ambient conditions. As an extension of our study, the dimolybdenum–dinitrogen complex bearing PNP pincer ligands has been found to work as an effective catalyst for the formation of ammonia from dinitrogen, where 52 equiv of ammonia are produced based on the catalyst (26 equiv of ammonia are produced based on the molybdenum atom of the catalyst). This is the most effective catalytic reaction system for the formation of ammonia from molecular dinitrogen catalyzed by transition metal–dinitrogen complexes as catalysts under ambient reaction conditions. Herein, we describe recent results concerning the catalytic reaction, including the proposed reaction pathway.  相似文献   

4.
《化学:亚洲杂志》2017,12(19):2544-2548
Molybdenum‐catalyzed conversion of molecular dinitrogen into ammonia under ambient reaction conditions has been achieved by using a proton source generated in situ from the ruthenium‐catalyzed oxidation of water in combination with visible light and a photosensitizer. The preset reaction system is considered as a new model for the nitrogen fixation by photosynthetic bacteria.  相似文献   

5.
The N?N bond of molecular dinitrogen bridging two molybdenum atoms in the pentamethylcyclopentadienyl molybdenum complexes that bear ferrocenyldiphosphine as an auxiliary ligand is homolytically cleaved under visible light irradiation at room temperature to afford two molar molybdenum nitride complexes. Conversely, the bridging molecular dinitrogen is reformed by the oxidation of the molybdenum nitride complex at room temperature. This result provides a successful example of the cleavage and formation of molecular dinitrogen induced by a pair of two different external stimuli using a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine under ambient conditions.  相似文献   

6.
About 20 % of the ammonia production is used as the chemical feedstock for nitrogen‐containing chemicals. However, while synthetic nitrogen fixation at ambient conditions has had some groundbreaking contributions in recent years, progress for the direct conversion of N2 into organic products remains limited and catalytic reactions are unknown. Herein, the rhenium‐mediated synthesis of acetonitrile using dinitrogen and ethyl triflate is presented. A synthetic cycle in three reaction steps with high individual isolated yields and recovery of the rhenium pincer starting complex is shown. The cycle comprises alkylation of a nitride that arises from N2 splitting and subsequent imido ligand centered oxidation to nitrile via a 1‐azavinylidene (ketimido) intermediate. Different synthetic strategies for intra‐ and intermolecular imido ligand oxidation and associated metal reduction were evaluated that rely on simple proton, electron, and hydrogen‐atom transfer steps.  相似文献   

7.
Cycling between molybdenum(I)-dinitrogen and molybdenum(IV)-nitride complexes was investigated under ambient reaction conditions. A kinetic study of the second-order reaction rate for the conversion of the molybdenum-dinitrogen complex into the molybdenum-nitride complex indicates that the formation of the dinitrogen-bridged dimolybdenum complex is involved in the rate-determining step. DFT calculations indicate that the molybdenum-dinitrogen complex transforms into the molybdenum-nitride complex via direct cleavage of the nitrogen-nitrogen triple bond of the bridging dinitrogen ligand of the dinitrogen-bridged dimolybdenum complex. The corresponding reaction of the molybdenum-nitride complex transforming into the molybdenum-dinitrogen complex proceeds via the ligand exchange of ammonia for dinitrogen at the dinitrogen-bridged dimolybdenum complexes. A new modified reaction pathway has been proposed based on the findings of our experimental and theoretical results.  相似文献   

8.
Molybdenum–iodide complexes bearing a PCP[1] ligand have been found to work as excellent catalysts toward ammonia formation under ambient reaction conditions among dinitrogen‐bridged dimolybdenum complexes and other molybdenum complexes bearing PNP and PCP[2] ligands.  相似文献   

9.
Mohd Riyaz  Dr. Neetu Goel 《Chemphyschem》2019,20(15):1954-1959
Reduction of dinitrogen to ammonia under ambient conditions is a long-standing challenge. The few metal-based catalysts proposed have conspicuous disadvantages such as high cost, high energy consumption, and being hazardous to the environment. Single-atom catalysis has emerged as a new frontier in heterogeneous catalysis and metal atoms atomically dispersed on supports receive more and more attention owing to rapid advances in synthetic methodologies and computational modeling. Herein, we propose metal atoms embedded in divacant graphene as a catalyst for N2 fixation based on density functional calculations. We systematically investigate the potential of using transition metal like Cr, Mn, Fe, Mo and Ru as catalysts and our study reveals that Cr embedded in graphene exhibit good catalytic activity for N2 fixation. The synergy between the metal atoms and graphene surface provides a stable support to the metal center that has a high spin density to promote adsorption of N2 and activation of its N≡N triple bond. Our study deciphers the mechanism of conversion of N2 to ammonia following two possible reaction pathways, distal and enzymatic routes, via sequential protonation and reduction of activated N2. The study provides a rational framework for conversion of dinitrogen to ammonia using single atom catalyst.  相似文献   

10.
A series of chromium-halide, -nitride, and -dinitrogen complexes bearing carbene- and phosphine-based PCP-type pincer ligands has been newly prepared, and some of them are found to work as effective catalysts to reduce dinitrogen under atmospheric pressure, whereby up to 11.60 equiv. of ammonia and 2.52 equiv. of hydrazine (16.6 equiv. of fixed N atom) are produced based on the chromium atom. To the best of our knowledge, this is the first successful example of chromium-catalyzed conversion of dinitrogen to ammonia and hydrazine under mild reaction conditions.  相似文献   

11.
The first successful example of cobalt‐catalyzed reduction of N2 with Me3SiCl and Na as a reductant, under ambient reaction conditions, gives N(SiMe3)3, which can be readily converted into NH3. In this reaction system, 2,2′‐bipyridine (bpy) is found to work as an effective additive to improve substantially the catalytic activity. Co?N2 complexes bearing three Me3Si groups as ancillary ligands are considered to work as key reactive species based on DFT calculations. The DFT results also allow the proposal of a detailed reaction pathway for the transformation of N2 into N(SiMe3)3.  相似文献   

12.
The {N2} unit of aryldiazonium salts undergoes unusually facile triple‐bond metathesis on treatment with molybdenum or tungsten alkylidyne ate complexes endowed with triphenylsilanolate ligands. The reaction transforms the alkylidyne unit into a nitrile and the aryldiazonium entity into an imido ligand on the metal center, as unambiguously confirmed by X‐ray structure analysis of two representative examples. A tungsten nitride ate complex is shown to react analogously. Since the bonding situation of an aryldiazonium salt is similar to that of metal complexes with end‐on‐bound dinitrogen, in which {N2}→M σ donation is dominant and electron back donation minimal, the metathesis described herein is thought to be a conceptually novel strategy toward dinitrogen cleavage devoid of any redox steps and, therefore, orthogonal to the established methods.  相似文献   

13.
For decades, N2 activation and functionalization have required the use of transition metal complexes. Thus, it is one of the most challenging projects to activate the abundant dinitrogen through metal-free systems under mild conditions. Here, we demonstrate a proof-of-concept study on the catalytic hydrogenation of dinitrogen (with activation energy as low as 15.3 kcal mol−1) initiated by a dual Lewis acid (DLA) via density functional theory (DFT) calculations. In addition, such a DLA could be also used to activate a series of small molecules including carbon dioxide, formaldehyde, N-ethylenemethylamine, and acetonitrile. It is found that aromaticity plays an important role in stabilizing intermediates and products. Our findings provide an alternative approach to N2 activation and functionalization, highlighting a great potential of DLA for small molecule activation.  相似文献   

14.
Dinitrogen (N2) is the most abundant gas in Earth's atmosphere, but its inertness hinders its use as a nitrogen source in the biosphere and in industry. Efficient catalysts are hence required to ov. ercome the high kinetic barriers associated to N2 transformation. In that respect, molecular complexes have demonstrated strong potential to mediate N2 functionalization reactions under mild conditions while providing a straightforward understanding of the reaction mechanisms. This Review emphasizes the strategies for N2 reduction and functionalization using molecular transition metal and actinide complexes according to their proposed reaction mechanisms, distinguishing complexes inducing cleavage of the N≡N bond before (dissociative mechanism) or concomitantly with functionalization (associative mechanism). We present here the main examples of stoichiometric and catalytic N2 functionalization reactions following these strategies.  相似文献   

15.
There is ongoing interest in metal complexes which bind dinitrogen and facilitate either its reduction or oxidation under mild conditions. In nature, the enzyme nitrogenase catalyzes this process, and dinitrogen fixation occurs under mild and ambient conditions at a metal-sulfur cluster in the center of the MoFe protein, but the mechanism of this process remains largely unknown. In the last few years, new important discoveries have been made in this field. In this review are discussed recent findings on the interaction of N(2) with metal atoms and metal-atom dimers from all groups of the periodic table as provided by gas-phase as well as matrix-isolation experiments. Intrinsic dinitrogen activation at such bare metal atoms is then related to corresponding processes at complexes, clusters, and surfaces.  相似文献   

16.
We report a unique class of dinitrogen complexes of iron featuring sulfur donors in the ancillary ligand. The ligands utilized are related to the recently studied tris(phosphino)silyl ligands (2-R(2)PC(6)H(4))(3)Si (R = Ph, iPr) but have one or two phosphine arms replaced with thioether donors. Depending on the number of phosphine arms replaced, both mononuclear and dinuclear iron complexes with dinitrogen are accessible. These complexes contribute to a desirable class of model complexes that possess both dinitrogen and sulfur ligands in the immediate iron coordination sphere.  相似文献   

17.
We report a nickel complex for catalytic oxidation of ammonia to dinitrogen under ambient conditions. Using the aryloxyl radical 2,4,6-tri-tert-butylphenoxyl (tBu3ArO⋅) as a H atom acceptor to cleave the N−H bond of a coordinated NH3 ligand up to 56 equiv of N2 per Ni center can be generated. Employing the N-oxyl radical 2,2,6,6-(tetramethylpiperidin-1-yl)oxyl (TEMPO⋅) as the H-atom acceptor, up to 15 equiv of N2 per Ni center are formed. A bridging Ni-hydrazine product identified by isotopic nitrogen (15N) studies and supported by computational models indicates the N−N bond forming step occurs by bimetallic homocoupling of two paramagnetic [Ni]−NH2 fragments. Ni-mediated hydrazine disproportionation to N2 and NH3 completes the catalytic cycle.  相似文献   

18.
As the strongest triple bond in nature, the N≡N triple bond activation has always been a challenging project in chemistry. On the other hand, since the award of the Nobel Prize in Chemistry in 1950, the Diels-Alder reaction has served as a powerful and widely applied tool in the synthesis of natural products and new materials. However, the application of the Diels-Alder reaction to dinitrogen activation remains less developed. Here we first demonstrate that a transition-metal-involved [4+2] Diels-Alder cycloaddition reaction could be used to activate dinitrogen without an additional reductant by density functional theory calculations. Further study reveals that such a dinitrogen activation by 1-metalla-1,3-dienes screened out from a series of transition metal complexes (38 species) according to the effects of metal center, ligand, and substituents can become favorable both thermodynamically (with an exergonicity of 28.2 kcal mol−1) and kinetically (with an activation energy as low as 13.8 kcal mol−1). Our findings highlight an important application of the Diels-Alder reaction in dinitrogen activation, inviting experimental chemists’ verification.  相似文献   

19.
Reduction of the five-coordinate iron(II) dihalide complexes (iPrPDI)FeX2 (iPrPDI = ((2,6-CHMe2)2C6H3N=CMe)2C5H3N; X = Cl, Br) with sodium amalgam under 1 atm of dinitrogen afforded the square pyramidal, high spin iron(0) bis(dinitrogen) complex (iPrPDI)Fe(N2)2. In solution, (iPrPDI)Fe(N2)2 loses 1 equiv of N2 to afford the mono(dinitrogen) adduct (iPrPDI)Fe(N2). Both dinitrogen compounds serve as effective precatalysts for the hydrogenation and hydrosilation of olefins and alkynes. Effecient catalytic reactions are observed with low catalyst loadings (< or = 0.3 mol %) at ambient temperature in nonpolar media. The catalytic hydrosilations are selective in forming the anti-Markovnikov product. Structural characterization of a high spin iron(0) alkyne and a bis(silane) sigma-complex has also been accomplished and in combination with isotopic labeling studies provides insight into the mechanism of both catalytic C-H and catalytic C-Si bond formation.  相似文献   

20.
The reaction of laser-ablated iridium atoms with dinitrogen molecules and nitrogen atoms yield several neutral and ionic iridium dinitrogen complexes such as Ir(N2), Ir(N2)+, Ir(N2)2, Ir(N2)2, IrNNIr, as well as the nitrido complexes IrN, Ir(N)2 and IrIrN. These reaction products were deposited in solid neon, argon and nitrogen matrices and characterized by their infrared spectra. Assignments of vibrational bands are supported by ab initio and first principle calculations as well as 14/15N isotope substitution experiments. The structural and electronic properties of the new dinitrogen and nitrido iridium complexes are discussed. While the formation of the elusive dinitrido complex Ir(N)2 was observed in a subsequent reaction of IrN with N atoms within the cryogenic solid matrices, the threefold coordinated iridium trinitride Ir(N)3 could not be observed so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号