首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为了对冷弯厚壁型钢管的生产工艺改进、产品性能分析、结构强度设计和数值模拟结果的验证提供依据,从母材性能分析入手,针对两批断面规格为200×300×9.2的冷弯厚壁矩形型钢管,对从辊式冷弯成型过程中长型材上截取的平板试件、弯角试件的力学性能进行了测试。在此基础上,结合冷弯生产工艺和母材性能,对平板、弯角试件力学性能随冷弯道次的变化规律作了较详细的讨论和分析,并将本文实测值与相关文献中厚壁型钢的冷作硬化效应作了对比。结果表明:型钢全截面上平板件的性能分布极不均匀,竖直配辊冷弯厚壁矩形钢管时,两竖直侧平板件强度低于母材;板材冷作硬化效应主要取决于母材的强度、伸长率和强屈比,其中强屈比对型钢的冷作硬化效应影响最大;为了改善冷弯型钢性能,还应保证热轧板带的质量。  相似文献   

2.
本文提出了关于提高低碳钢硬化强度指标的新方法、是将试样扭转至剪切屈服极限后,按一定梯度增加单位残余塑性扭转角θ_p,卸载后将得到的硬化试样再进行常规拉伸试验,获得扭转拉伸硬化屈服极限σ_(τs)和强度极限σ_(τb),它们超过了常规拉伸硬化的强度指标.  相似文献   

3.
扭转是一种常用的冷作硬化方法。本文通过实心圆轴扭转实验和预扭试件的单向拉伸实验,研究了扭转塑性变形程度对6063铝合金拉伸力学性能的影响。通过理论研究和硬度分析探究了造成这一影响的内在机理。结果表明,试件扭转后其内部形成的以屈服强度为特征参数的梯度结构,是造成预扭试件力学性能得到改善的根本原因。并且,扭转不同的角度,材料内部产生的梯度结构也是不同的。而不同的梯度结构对试件力学性能的影响则表现为后继拉伸屈服强度随预扭角度的增大而增大。为了预测预扭试件的后继拉伸力学行为,验证前述结论的正确性,建立了由内到外屈服强度逐渐变化的有限元模型。此模型代表了预扭转变形试件,对其施加位移载荷,模拟后继单向拉伸加载过程。模拟所得材料力学性能随扭转角的变化趋势与实验结果基本吻合,从而验证了扭转冷作硬化后,圆轴试件内部产生了以屈服强度为特征参数的梯度结构这一结论。同时,也提供了一种有效的预测材料扭转后拉伸力学性能的数值模拟方法。  相似文献   

4.
I型定常扩展裂纹尖端的弹黏塑性场   总被引:1,自引:1,他引:1  
Jia Bin  王振清  李永东 《力学学报》2005,37(4):421-427
考虑材料在扩展裂纹尖端的黏性效应,假设黏性系数与塑性应变率的幂次成反比,对幂硬化材料中平面应变扩展裂纹尖端场进行了弹黏塑性渐近分析,得到了不含间断的连续解,并讨论了I型裂纹数值解的性质随各参数的变化规律. 分析表明应力和应变均具有幂奇异性,并且只有在线性硬化时,尖端场的弹、黏、塑性才可以合理匹配. 对于I型裂纹,裂尖场不含弹性卸载区. 当裂纹扩展速度趋于零时,动态解趋于准静态解,表明准静态解是动态解的特殊形式;如果进一步考虑硬化系数为零的极限情况,便可退化为Hui和Riedel的非线性黏弹性解.  相似文献   

5.
干摩擦条件下3Cr13 涂层的加速磨损机理研究   总被引:5,自引:3,他引:2  
在MM200摩擦磨损试验机上对高速电弧喷涂3Cr13涂层在干摩擦条件下的加速磨损机理进行了研究.涂层在加速磨损过程中经历了跑合磨损、稳定磨损、剧烈磨损这三个不同的阶段.采用扫描电镜、X射线衍射仪、显微硬度仪和纳米压痕仪对涂层磨损各阶段的截面形貌、残余应力、硬度和纳米力学性能进行了表征.结果表明:在加速磨损寿命3个阶段中,涂层的磨损机制和影响残余应力的主导因素是动态变化的,过分的冷作硬化加剧了涂层的失效,涂层磨损寿命长短关键在于稳定磨损时间的长短.  相似文献   

6.
钢轨短波长波浪形磨损的安定性分析   总被引:2,自引:5,他引:2  
针对轮-轨滚动接触的短波长波浪形磨损现象,采用有限元法分析了三维实体模型的接触状态,通过计算分析了高频力作用下接触表面的塑性变形过程.结果表明:在一定的运动条件下,由于重复滚压作用,接触表面发生硬化并达到安定极限状态,生成有规律的短波长变形;钢轨表面塑性变形受枕木间距的影响;就具有随动硬化特性的钢轨材料而言,当摩擦系数μ<0.3时,屈服现象发生在材料表层下方;随着摩擦系数的增大,接触表面的切向力增大,安定极限的临界接触压力Po降低,屈服点移向接触表面,材料失效加快.  相似文献   

7.
激光冷硬利用激光振动处理,可强化工件,使经受疲劳载荷.人们利用一种高能量脉冲激光透过金属,使它发生振动.结果就在这个地方形成一种均匀坚硬的冷作硬化显微结构.这就叫做激光冷硬.它常常被用于铝、钢制航空零件的紧固件孔区强化.当激光脉冲把能量传到金属表面时,金属表面就吸收能量.一些表层原子的状态发生变化,引起流动应力波,流动应力波以大于每平方英时一百万磅的峰值压力通过材 ...  相似文献   

8.
激光冷硬利用激光振动处理,可强化工件,使经受疲劳载荷.人们利用一种高能量脉冲激光透过金属,使它发生振动.结果就在这个地方形成一种均匀坚硬的冷作硬化显微结构.这就叫做激光冷硬.它常常被用于铝、钢制航空零件的紧固件孔区强化.当激光脉冲把能量传到金属表面时,金属表面就吸收能量.一些表层原子的状态发生变化,引起流动应力波,流动应力波以大于每平方英时一百万磅的峰值压力通过材 ...  相似文献   

9.
消息与动态     
激光冷硬利用激光振动处理,可强化工件,使经受疲劳载荷.人们利用一种高能量脉冲激光透过金属,使它发生振动.结果就在这个地方形成一种均匀坚硬的冷作硬化显微结构.这就叫做激光冷硬.它常常被用于铝、钢制航空零件的紧固件孔区强化.当激光脉冲把能量传到金属表面时,金属表面就吸收能量.一些表层原子的状态发生变化,引起流动应力波,流动应力波以大于每平方英时一百万磅的峰值压力通过材  相似文献   

10.
对316L不锈钢的非比例循环粘塑性本构描述   总被引:1,自引:0,他引:1  
对循环硬化的316L不锈钢提出了一个考虑非比例循环加载下流动和硬化特性的粘塑性本构模型。模型中,通过随动硬化的背应力演化以各向同性阻力演化非比例循环路径及其历史的依赖关系来表征材料的非比例循环附加硬化和非比例循环流动特性,将模型用于预测316L不锈钢的圆形,正菱形应变路径的复杂循环变形行为,其预言结果与实验结果吻合很好。  相似文献   

11.
The present study aims at characterizing the post-necking strain hardening behavior of three sheet metals having different hardening behavior. Standard tensile tests were performed on sheet metal specimens up to fracture and heterogeneous logarithmic strain fields were obtained from a digital image correlation technique. Then, an appropriate elasto-plastic constitutive model was chosen. Von Mises yield criterion under plane stress and isotropic hardening law were considered to retrieve the relationship between stress and strain. The virtual fields method (VFM) was adopted as an inverse method to determine the constitutive parameters by calculating the stress fields from the heterogeneous strain fields. The results show that the choice of a hardening law which can describe the hardening behavior accurately is important to derive the true stress–strain curve. Finally, post-necking hardening behavior was successfully characterized up to the initial stage of localized necking using the VFM with Swift and modified Voce laws.  相似文献   

12.
Key issues in cyclic plasticity modeling are discussed based upon representative experimental observations on several commonly used engineering materials. Cyclic plasticity is characterized by the Bauschinger effect, cyclic hardening/softening, strain range effect, nonproporitonal hardening, and strain ratcheting. Additional hardening is identified to associate with ratcheting rate decay. Proper modeling requires a clear distinction among different types of cyclic plasticity behavior. Cyclic hardening/softening sustains dependent on the loading amplitude and loading history. Strain range effect is common for most engineering metallic materials. Often, nonproportional hardening is accompanied by cyclic hardening, as being observed on stainless steels and pure copper. A clarification of the two types of material behavior can be made through benchmark experiments and modeling technique. Ratcheting rate decay is a common observation on a number of materials and it often follows a power law relationship with the number of loading cycles under the constant amplitude stress controlled condition. Benchmark experiments can be used to explore the different cyclic plasticity properties of the materials. Discussions about proper modeling are based on the typical cyclic plasticity phenomena obtained from testing several engineering materials under various uniaxial and multiaxial cyclic loading conditions. Sufficient experimental evidence points to the unambiguous conclusion that none of the hardening phenomena (cyclic hardening/softening, strain range effect, nonproportional hardening, and strain hardening associated with ratcheting rate decay) is isotropic in nature. None of the hardening behavior can be properly modeled with a change in the yield stress.  相似文献   

13.
The problem of a semi-infinite body with an edge crack subjected to far out-of-plane shear is solved by a transformation to a hodograph plane and the Wiener-Hopf technique. The material stress-strain behavior is governed by a pure power hardening relation and the results are valid for both deformation theory and flow theory of plasticity. Results are presented for crack opening displacement, path independent J integral and crack tip singularities for all finite values of the power hardening parameter.  相似文献   

14.
Shakedown analysis is an extension of plastic limit analysis to the case of variable repeated loads and plays a significant role in safety assessment and structural design. This paper presents a solution procedure based on the meshless local Petrov–Galerkin (MLPG) method for lower-bound shakedown analysis of bounded kinematic hardening structures. The numerical implementation is very simple and convenient because it is only necessary to construct an array of nodes in the targeted domain. Moreover, the natural neighbour interpolation (NNI) is employed to construct trial functions for simplifying the imposition of essential boundary conditions. The kinematic hardening behaviour is simulated by an overlay model and the numerical difficulties caused by the time parameter are overcome by introducing the conception of load corner. The reduced-basis technique is applied to solve the mathematical programming iteratively through a sequence of reduced residual stress subspaces with very low dimensions and the resulting non-linear programming sub-problems are solved via the Complex method. Numerical examples demonstrate that the proposed solution procedure is feasible and effective to determine the shakedown loads of bounded kinematic hardening structures as well as unbounded kinematic hardening structures.  相似文献   

15.
Instrumented indentation is a popular method for determining mechanical properties in engineering materials. However, there are several shortcomings and challenges involved with correctly interpreting the test results. We propose here a unified method for evaluating instrumented indentation testing conducted on a material that exhibits both strain hardening under yielding and which is subjected to uniform, equi-biaxial residual stresses. The proposed method is based on extensive finite element simulations that relate the parameter-space spanned by Young’s modulus, yield strength, strain hardening and residual stress, to the response from the indentation test. Based on reverse analysis, the proposed method can be used to determine two unknown quantities, such as yield strength and strain hardening. The technique involves utilizing the concept of representative strain and plural indenter-shapes.  相似文献   

16.
The Finite Element Model Updating (FEMU) technique is an inverse method that enables to arrive at a complete solution to the problem of diffuse necking of a thick tensile specimen. Conventionally, FEMU relies on the identification of a phenomenological strain hardening law that inherently limits the accuracy of the method due to the predefined character of the adopted strain hardening law. A high-resolution multi-linear post-necking strain hardening model enables to describe more generically the actual strain hardening behaviour. A numerical concept study is used to scrutinise the identification of such a model using FEMU. It is shown that, unlike progressive identification strategies, a global identification strategy followed by a smoothing operation based on area conservation yields sufficiently accurate results. To study the experimental feasibility, the latter strategy is used to identify the post-necking strain hardening behaviour of a thick S690QL high-strength steel. To this purpose, a notched tensile specimen was loaded up to fracture, while the elongation was measured using Digital Image Correlation (DIC). It is shown that the global identification strategy suffers from experimental noise associated with DIC and the load signal.  相似文献   

17.
A newly developed multi-axial testing technique for sheet materials is employed to investigate the inelastic response of a temper-rolled stainless steel 301LN under isothermal quasi-static loading conditions at room temperature. The experimental technique consists of a flat sheet specimen, which is subject to combinations of shear and normal loading using a custom-made dual-actuator system. The large deformation behavior under monotonic loading is determined along more than 20 distinct radial paths in the stress space. The experimental results indicate that Hill's quadratic yield function along with an associated flow rule provides a good approximation of the initial yield behavior of this anisotropic two-phase FCC/BCC sheet material. Based on the experimental data for radial monotonic loading, it is concluded that conventional isotropic-kinematic hardening models cannot successfully describe the strain hardening of this austenitic steel. Instead, a non-associated anisotropic hardening model is proposed that relates the increase in yield strength to an isothermal martensitic transformation kinetics law. The comparison of the model predictions with the experimental results shows very good agreement for all biaxial and uniaxial experiments.  相似文献   

18.
Suspensions in polymeric, viscoelastic liquids have been studied in uniaxial extensional flow. The fibre wind-up technique has been used for this purpose. The effects of particle size and particle volume fraction have been investigated, using monodisperse, spherical particles. The results have been compared with shear flow data on the same materials. The values of the relative extensional viscosities at low stretching rates are in agreement with the relative shear viscosities and relative moduli. This indicates that hydrodynamic forces are stronger than the particle interaction forces. At larger strain rates strain hardening occurs; it is suppressed when particles are added. Small aggregating particles reduce the strain hardening more strongly than larger particles; strain hardening can even be totally eliminated. When further increasing the stretching rate, hydrodynamic effects dominate again and the effect of particle size effect on strain hardening disappears.  相似文献   

19.
A rate-independent plasticity theory based on the concept of dual variables and dual derivatives is utilized to describe finite elastic-plastic deformations including kinematic and isotropic hardening effects. Application of this theory to the problem of the thick-walled tube under internal pressure leads to a system of partial differential equations of hyperbolic type. The existence and uniqueness of the solution of the boundary value problem is guaranteed, as well as the convergence of its numerical approximation. The exact solution of this problem is calculated by means of an extrapolation technique. This integration method turns out to be applicable for rather general hardening models of rate-independent plasticity. On the basis of the computed solutions the influence of the hardening parameters is investigated. As finite deformations are of special interest, this investigation is carried out not only for the partially yielded tube but also for the completely plastified tube. Furthermore, the onset of secondary plastic flow during unloading as well as residual stress distributions are studied.  相似文献   

20.
The current paper presents a finite element simulation of the residual stress field associated with a three pass slot weld in an AISI 316LN austenitic stainless steel plate. The simulation is split into uncoupled thermal and mechanical analyses which enable a computationally less expensive solution. A dedicated welding heat source modelling tool is employed to calibrate the ellipsoidal Gaussian volumetric heat source by making use of extensive thermocouple measurements and metallographic analyses made during and after welding. The mechanical analysis employs the Lemaitre–Chaboche mixed hardening model. This captures the cyclic mechanical response which a material undergoes during the thermo-mechanical cycles imposed by the welding process. A close examination of the material behaviour at various locations in the sample during the welding process, clearly demonstrates the importance of defining the correct hardening and high temperature softening behaviour. The simulation is validated by two independent diffraction techniques. The well-established neutron diffraction technique and a very novel spiral slit X-ray synchrotron technique were used to measure the residual stress–strain field associated with the three-pass weld. The comparison between the model and the experiment reveals close agreement with no adjustable parameters and clearly validates the used modelling procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号