首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Random copolycyanurates with a low number of amide units in the main chain have been developed as a candidate of dismantlable adhesives based on the rapid decrease of the molecular weights during the rearrangement to polyisocyanurates by a thermal treatment. The random copolycyanurates were prepared by the phase‐transfer‐catalyzed polycondensation of 2,4‐dichloro‐6‐methoxy‐1,3,5‐triazine with bisphenol A and a new bisphenol containing an amide unit in the presence of tetrabutylammonium bromide. They exhibited an excellent adhesive property for the silicon and copper deposited on the silicon substrate after the high thermal treatment of 240 °C under 0.6 MPa compression, and the die shear strengths of these polymers dramatically decreased at 260 °C for 1 h. Random copolycyanurates containing the amide unit are shown to be promising materials for dismantlable adhesion. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1153–1158  相似文献   

2.
The thermal degradation of two high temperature epoxy adhesives has been measured in terms of weight loss and adhesion loss and the lifetime predictions are compared for the two independent measurements of thermal degradation. Weight loss measurements were performed at high temperature under accelerated thermal aging conditions. Adhesion loss measurements were performed at lower temperatures closer to typical continuous operating temperatures. An Arrhenius relationship is validated for the thermal degradation of the epoxy adhesives, and the extent of degradation in terms of weight loss and adhesion loss is modelled with an autocatalytic rate expression. The degradation kinetic parameters and models are compared between the two thermal degradation measurements and are found to give similar predictions for the lifetime of the adhesives. In addition, the relationship between network degradation and loss of adhesive strength is discussed.  相似文献   

3.
Waterborne polyurethane (WBPU) sol–gel adhesives were prepared through a prepolymer process followed by a sol–gel reaction of (3-aminopropyl)triethoxysilane (APTES). The terminal amine group of APTES reacted with the NCO group of the prepolymer, and the ethoxy group created Si–O–Si branching by hydrolysis and condensation reactions in water at the dispersion step. Water swelling (%), tensile strength and Young’s modulus of the synthesized WBPU sol–gel adhesives were improved by increasing APTES content. Synthesized WBPU sol–gel adhesives were used for bonding nylon fabrics. A significant improvement in adhesive strength was recorded, and the potential for good adhesive strength under water at moderately high temperature (up to 75 °C) was observed with 6.84 mol% APTES in WBPU sol–gel adhesives.  相似文献   

4.
A series of polyimide(PI) adhesives were synthesized from 2,2'-Bis [4-(4-aminophenoxy)phenyl] propane(BAPP), 4,4'-Diaminodiphenylmethane (MDA) and 3,3',4,4'-Benzophenonetetracarboxylic acid dianhydride (BTDA) via a two-step process. PI adhesives with different BAPP content were characterized in regard to their structure, thermal stability, mechanical properties and adhesive performance. Results showed that these PIs had excellent thermal stability, whose glass transition temperature (Tg) were around 300°C. While, superior dynamic mechanical behavior was observed, and the maximum loss factor declined with the increase of BAPP content. Single-lap shear strength of over 15.58 MPa at room temperature was obtained, and it remained high even at the temperature of 350°C. Factors that could affect bonding strength of these PI adhesives such as molar ratio of the diamine monomers, surface roughness of adherends and curing processes were investigated.  相似文献   

5.
The curing behavior of phosphorus based epoxy terminated polymers was studied using diaminodiphenyl ether, diaminodiphenyl sulfone, benzophenone tetracarboxylic dianhydride and the commercial hardener of Ciba-Geigy's two-pack araldite, as curing agent. The adhesive strength of these adhesives was measured by various ASTM methods like lap-shear, peel, and cohesive tests on metal-metal, wood-wood and wood-metal interfaces. All these results were compared with the synthesized epoxy resins prepared from bisphenol-A and epichlorohydrin having the epoxy equivalent value of 0.519. The thermal stability of both the virgin resin and its cured form was also studied by thermogravimetric analysis.  相似文献   

6.
Some silica-organic compounds were prepared by an addition reaction between γ-amino-propyl-triethoxy silane and 4,4′-diphenylmethane diisocyanate. The obtained products were characterized by FTIR spectrometry. The essential synthesis parameter was the molar ratio between the two reactants. The thermal behavior of the products was rather good, until 150 °C no mass loss or thermal effects being observed. The thermal behavior was determined under non-isothermal conditions, using TG/DTG/HF diagrams. Due to the hydroxyl end-groups, these compounds are recommended for adhesives between organic and inorganic surfaces.  相似文献   

7.
The formulation, polymerization, and performance of a new class of low‐surface‐energy adhesives for plastics are described. The polymerization involves the simultaneous room‐temperature polymerization of polyoxirane monomers in an acrylic monomer phase. The polymerization of the acrylic phase and adhesion promotion to plastics are catalyzed after the decomplexation and oxidation of trialkylborane–amine complexes. The polymerization of the epoxy phase is catalyzed with a Lewis acid such as BF3, ZnCl2, or SnCl4 complexed with ether or amine. This article explores the resulting adhesives as a function of the epoxy monomer functionality, concentration, solubility in the acrylic monomer, Lewis acid catalyst concentration, phase crosslinking, and postprocessing thermal history. The adhesive morphology exhibits a finely dispersed epoxy phase strongly interacting with the major acrylic phase resulting from a nucleation‐and‐growth phase‐separation mechanism. Excellent adhesion to plastics, including polyethylene, polypropylene, poly(tetrafluoroethylene), poly(ethylene terephthalate), and nylon, is achieved with a much higher thermal performance than that achievable with acrylic polymers alone. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 989–998, 2007  相似文献   

8.
唐佩福  吴德成 《高分子科学》2017,35(10):1231-1242
PEG-related adhesives are limited in clinical use because they are easy to swell and cannot support the cell growth.In this study,we produced a series of POSS-modified PEG adhesives with high adhesive strength.Introduction of inorganic hydrophobic POSS units decreased the swelling of the adhesives and enhanced cell adhesion and growth.The in vitro cytotoxicity and in vivo inflammatory response experiments clearly demonstrated that the adhesives were nontoxic and possessed excellent biocompatibility.Compared with the sutured wounds,the adhesive-treated wounds showed an accelerated healing process in wounded skin model of the Bama miniature pig,demonstrating that the POSS-modified PEG adhesive is a promising candidate for wound closure.  相似文献   

9.
The adhesive strength at the bipolymer blend/fiber interface was determined by the pull-out method. Epoxy resin blends with heat-resistant linear thermoplastics, poly(arylene ether ketone)s of different molecular masses and chemical compositions, were used as adhesives, and a steel wire of 150 μm diameter was used as a substrate. It was found that the addition of 5–20 wt % poly(arylene ether ketone) to epoxy resin results in a 10–20% increase in the adhesive strength; a sharp gain in the adhesive strength (by 50–80%) is observed at a modifier content of 30%. The introduction of nanoparticles (Na+-montmorillonite) into the epoxy resin-poly(arylene ether ketone) blend increases the strength of adhesive bonding to steel wire. Possible reasons for the observed changes in the adhesive strength are discussed.  相似文献   

10.
Polyether-based polyurethane/poly (methyl methacrylate-co-ethyleneglycol dimethacrylate) interpenetrating polymer networks [PU/P (MMA–co–EGDMA)-IPNs] were synthesized and used as adhesives to adhere vulcanized natural rubber (NR) and soft polyvinyl chloride (PVC). The structure and morphology of the IPN adhesives in bulk and near the adhesive/substrate interfaces were investigated. A new mechanism of adhesion called conjugate interpenetration of networks across interfaces, which is suitable for IPN adhesives and polymer substrates, was put forward. According to this mechanism, while forming simultaneous interpenetrating networks in the adhesive, the monomers in the IPN adhesive can permeate polymer substrates and polymerize in situ to form gradient IPNs, thereby producing conjugate three-component IPNs near the adhesive/substrate interfaces. It is the conjugate interpenetration of the networks across the interfaces that strengthens interfacial combination remarkably and results in high bond strength of IPN adhesives. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
The behavior of adhesive joints made with epoxy adhesives of various compositions under exposure to different climatic zones with and without a load, as well as water resistance and resistance to thermal aging, is considered.  相似文献   

12.
Natural ultramicronized calcium carbonate and mixtures of fumed silica‐natural ultramicronized calcium carbonate are proposed as fillers of solvent based polyurethane (PU) adhesives. PU adhesive containing only calcium carbonate shows similar rheological, thermal, mechanical, surface and adhesion properties than the PU adhesive without filler. Addition of 90 wt% fumed silica +10 wt% calcium carbonate mixture to PU adhesive produced a similar performance than the PU adhesive containing only famed silica. The increase in the amount of natural calcium carbonate in respect to fumed silica in the filler mixture produced detrimental effect on the rheological and mechanical properties of the PU adhesives (in respect to those provided by the PU adhesive only containing fumed silica), although the surface and adhesion properties were not noticeably modified.  相似文献   

13.
Development of high-performance bio-nanocomposite adhesives is of high interest due to their environmentally friendly nature and superior mechanical properties in outdoor environments. Nano-crystalline cellulose (NCC) and resilin are among the most promising bio-nanofillers, providing strength and elasticity, respectively. A novel bio-nanocomposite comprised of NCC and resilin fused to a cellulose binding domain (Res.-CBD) is presented. As a case study, commercial epoxy adhesive was chosen as a matrix for the bio-nanocomposite adhesive. Insertion of hydrophilic NCC into hydrophobic resins, such as epoxy, is typically performed using solvent exchange, chemical modification, emulsifier addition or mixing with water-borne resins, techniques which either limit the material’s application range or which are considered environmentally unfriendly. The unique approach presented here employed Res.-CBD as a surfactant-like agent supportive of the direct insertion of water-suspended NCC into an epoxy resin. The presented approach involves binding of Res.-CBD to NCC through its CBD domain and a chemical reaction between the resin epoxide groups and Res.-CBD amine moieties. The resulting bio-nano material shows a 50 % increase in the Young’s modulus and a 20 % decrease in the tan(δ), compared to pristine epoxy. This novel epoxy adhesive can be advantageous in applications where higher elasticity and Young’s modulus are required.  相似文献   

14.
This paper reports a study on the effect of Al2O3 nanoparticles on the adhesion strength of steel-glass/epoxy composite joints bonded by a two-component structural acrylic adhesive. The addition of Al2O3 nanoparticles to the two-component acrylic adhesive led to a remarkable enhancement in the shear and tensile strength of the composite joints. The shear and tensile strength of the adhesive joints increased by addition of Al2O3 up to 1.5 wt%, which decreased by further addition of the nanofiller. Introduction of the nanoparticles caused a reduction in the peel strength of the joints. DSC analysis revealed that the glass transition temperature (Tg) of the adhesives rose by increasing the nanofiller content. The advancing water contact angle was decreased for adhesives containing nanoparticles. SEM micrographs indicated good dispersions of the Al2O3 nanoparticles within the acrylic matrix in the specimens with up to 1.5 wt% Al2O3 and revealed that addition of nanoparticles altered the fracture morphology from smooth to rough fracture surfaces.  相似文献   

15.
Recently, there has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure-sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties; the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this study, we present an easy, scalable method, relying on conventional and unconventional techniques, to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provides anisotropic adhesion properties. We measured the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function. Consistent with the peel zone model, samples with lower tilt angles yielded larger adhesion forces. The tribological properties of the synthetic arrays were highly anisotropic, reminiscent of the frictional adhesion behavior of gecko setal arrays. When a 60° tilt sample was actuated in the gripping direction, a static adhesion strength of ~1.4 N/cm(2) and a static friction strength of ~5.4 N/cm(2) were obtained. In contrast, when the dry adhesive was actuated in the releasing direction, we measured an initial repulsive normal force and negligible friction.  相似文献   

16.
The imitation of mussels and oysters to create high-performance adhesives is a cutting-edge field. The introduction of inorganic fillers is shown to significantly alter the adhesive's properties, yet the potential of mesoporous materials as fillers in adhesives is overlooked. In this study, the first report on the utilization of mesoporous materials in a biomimetic adhesive system is presented. Incorporating mesoporous silica nanoparticles (MSN) profoundly enhances the adhesion of pyrogallol (PG)–polyethylene imine (PEI) adhesive. As the MSN concentration increases, the adhesion strength to glass substrates undergoes an impressive fivefold improvement, reaching an outstanding 2.5 mPa. The adhesive forms an exceptionally strong bond, to the extent that the glass substrate fractures before joint failure. The comprehensive tests involving various polyphenols, polymers, and fillers reveal an intriguing phenomenon—the molecular structure of polyphenols significantly influences adhesive strength. Steric hindrance emerges as a crucial factor, regulating the balance between π-cation and charge interactions, which significantly impacts the multicomponent assembly of polyphenol-PEI-MSN and, consequently, adhesive strength. This groundbreaking research opens new avenues for the development of novel biomimetic materials.  相似文献   

17.
用含螺环原碳酸酯的预聚物改性环氧树脂的研究   总被引:6,自引:0,他引:6  
合成了一个新的螺环原碳酸酯单体,3,9 二羟甲基 3’,9’ 二苯基 1,5,7,11 四氧杂螺环[5,5]十一烷,它与二苯甲烷二异氰酸酯(MDI)反应生成了低分子量预聚物,用该预聚物对环氧树脂进行改性,可以减少残留在树脂基体中的环氧基团,这说明该预聚物与环氧树脂之间发生了共聚固化反应.基体的Tg和热稳定性随预聚物加入量的增加而降低,但改性环氧树脂的粘接强度则随预聚物的加入量的增加而增加,螺环基团上的取代基对改性环氧树脂基体也有一定的影响,作者对上述试验观察到的现象进行了讨论.  相似文献   

18.
Generating strong adhesion by engineered proteins has the potential for high technical applications. Current studies of adhesive proteins are primarily limited to marine organisms, e.g., mussel adhesive proteins. Here, we present a modular engineering strategy to generate a type of exotic protein adhesives with super strong adhesion behaviors. In the protein complexes, the lanmodulin (LanM) underwent α-helical conformational transition induced by lanthanides, thereby enhancing the stacking density and molecular interactions of adhesive protein. The resulting adhesives exhibited outstanding lap-shear strength of ≈31.7 MPa, surpassing many supramolecular and polymer adhesives. The extreme temperature (−196 to 200 °C) resistance capacity and underwater adhesion performance can significantly broaden their practical application scenarios. Ex vivo and in vivo experiments further demonstrated the persistent adhesion performance for surgical sealing and healing applications.  相似文献   

19.
To investigate the effects of lignin methylolation and lignin adding stage on the resulted lignin-based phenolic adhesives, Alcell lignin activated with NaOH (AL) or methylolation (ML) was integrated into the phenolic adhesives system by replacing phenol at various adhesive synthesis stages or directly co-polymerizing with phenolic adhesives. Lignin integration into phenolic adhesives greatly increased the viscosity of the resultant adhesives, regardless of lignin methylolation or adding stage. ML introduction at the second stage of adhesive synthesis led to much bigger viscosity than ML or AL introduction into phenolic adhesives at any other stages. Lignin methylolation and lignin adding stage did not affect the thermal stability of lignin based phenolic adhesives, even though lignin-based adhesives were less thermally stable than NPF. Typical three-stage degradation characteristics were also observed on all the lignin-based phenolic adhesives. Three-ply plywoods can be successfully laminated with lignin based adhesives, and it was interesting that after 3 h of cooking in boiling water, the plywoods specimens bonded with lignin-based phenolic adhesives displayed higher bonding strength than the corresponding dry strength obtained after direct conditioning at 20 °C and 65% RH. Compared with NPF, lignin introduction significantly reduced the bonding strength of lignin based phenolic adhesives when applied for plywood lamination. However, no significant variation of bonding strength was detected among the lignin based phenolic adhesives, regardless of lignin methylolation or adding stages.  相似文献   

20.
The general properties of adhesives and compounds for electronic articles are described that were elaborated by the company: TK-1 adhesive with elevated thermal conductivity; TEK-type adhesives that demonstrate higher elasticity and adhesion ability; TK-8-type all-purpose adhesives; MS-type, single-packed, thermally stable glues for long storage; electrically conductive adhesives; TPK-1 and TPK-2 magnetic adhesives and TPK-3 nonmagnetic adhesive; and some compounds, e.g., epoxide molding compositions. The functionality of all adhesives and compounds presented were tested for weather factors, including elevated humidity, higher and lower temperatures, thermal cycles, effects of vibrations for both pilot samples, and final articles of electronic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号