首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The HO2 uptake coefficient (gamma) for inorganic submicrometer wet and dry aerosol particles ((NH4)2SO4 and NaCl) under ambient conditions (760 Torr and 296 +/- 2 K) was measured using an aerosol flow tube (AFT) coupled with a chemical conversion/laser-induced fluorescence (CC/LIF) technique. The CC/LIF technique enabled experiments to be performed at almost the same HO2 radical concentration as that in the atmosphere. HO2 radicals were injected into the AFT through a vertically movable Pyrex tube. Injector position-dependent profiles of LIF intensity were measured as a function of aerosol concentration. Measured gamma values for dry aerosols of (NH4)2SO4 were 0.04 +/- 0.02 and 0.05 +/- 0.02 at 20% and 45% relative humidity (RH), respectively, while those of NaCl were <0.01 and 0.02 +/- 0.01 at 20% and 53% RH, respectively. For wet (NH4)2SO4 aerosols, measured gamma values were 0.11 +/- 0.03, 0.15 +/- 0.03, 0.17 +/- 0.04, and 0.19 +/- 0.04, at 45%, 55%, 65%, and 75% RH, respectively, whereas for wet NaCl aerosols the values were 0.11 +/- 0.03, 0.09 +/- 0.02, and 0.10 +/- 0.02 for 53%, 63%, and 75% RH, respectively. Wet (NH4)2SO4 and NaCl aerosols doped with CuSO4 showed gamma values of 0.53 +/- 0.12 and 0.65 +/- 0.17, respectively. These results suggest that compositions, RH, and phase for aerosol particles are significant to HO2 uptake. Potential HO2 loss processes and their atmospheric contributions are discussed.  相似文献   

2.
The D(1)-D(0) transitions of diphenylmethyl (DPM) and chlorodiphenylmethyl (CDPM) radicals were studied by laser induced fluorescence (LIF) spectroscopy in a supersonic jet. Laser induced fluorescence excitation and dispersed fluorescence (DF) spectra were obtained for DPM and CDPM radicals produced by ArF excimer laser (193 nm) photolyses of their chlorides. With the aid of the density functional theory (DFT) calculation, vibronic bands are assigned by comparing the observed LIF excitation spectra of the jet-cooled radicals with the single vibronic level DF spectra. Low-frequency vibrations of 55 and 53 cm(-1) in the ground and excited states, respectively, are assigned to the symmetric phenyl torsional mode of the DPM radical. The geometries of DPM in the ground and excited states are discussed with regards to observed spectra and DFT calculations. Similarly for the CDPM radical, symmetric phenyl torsional and Ph-C-Ph bending modes are assigned and the halogen-substitution effect in equilibrium geometry is discussed.  相似文献   

3.
A method to selectively generate vapor signatures from malathion entrained within matrices of surface-impacted aerosol particles has been demonstrated. The method uses ultraviolet radiation (172 or 222 nm) from a continuous wave discharge lamp to photodissociate malathion molecules collected within and on surface-impacted particles, followed by detection via ion mobility spectrometry (IMS). Since surface heating does not occur, only those molecules whose photofragments exhibit high vapor pressure are introduced into the IMS instrument and then only those exhibiting high proton affinity are subsequently detected. This process produces less signal clutter than in pyrolysis-IMS, where the background aerosol is pyrolyzed along with the sample. Quantities of malathion as small as 50 ng could be detected when the malathion was entrained on a clean surface, and as small as 100 ng when co-entrained on a surface with much larger quantities of background aerosols such as diesel soot, road dust, Bacillus globigii, albumin, and cotton lint. This sensitivity indicates that, when combined with a particle collector as an effective pre-concentrator, detection of malathion aerosol concentrations of <0.01 mg/m3 will be possible. Since malathion can be viewed as a model compound, this technique is also extendable to the detection of organophosphate war chemicals.  相似文献   

4.
In a series of experiments devoted to the study of polycyclic aromatic hydrocarbons for astrophysical applications, the S(2)<--S(0) transition of jet-cooled pyrene (C(16)H(10)) at 321 nm has been studied by an absorption technique for the first time. The spectra observed by cavity ring-down spectroscopy closely resemble the excitation spectra obtained earlier by laser-induced fluorescence (LIF) and show the same band clusters arising from the vibronic interaction of S(2) with S(1). We have also investigated pyrene when it was incorporated into 380 mK cold helium droplets. These spectra which were recorded employing LIF and molecular beam depletion spectroscopy are broadened and redshifted by 0.94 nm but retain the essential features of the gas phase spectra.  相似文献   

5.
This study evaluated the derivatization procedures for detecting the three most commonly monosaccharide anhydrides (MAs) (levoglucosan, mannosan and galactosan) in atmospheric aerosols using gas chromatography-mass spectrometry (GC-MS). Various silylating agents, mainly trimethylsilylating agents (TMS), were compared and the effects of various contents of trimethylchlorosilane (TMCS, as a stimulator) were evaluated to optimize the conditions for detecting these compounds in aerosol samples. Differences among the abundances of the derivatives were caused by the sterical hindrance of three hydroxyl groups in the structures of monosaccharide anhydrides. The effects of the reaction time and temperature were also examined. The optimal reaction time and temperature were 60 min and 80 °C with 1% TMCS plus 0.2% 1,4-dithioerythritol (DTE). Under these conditions, the percentages of formation of bis-O-TMS derivatives (as by-products) were 23, 29 and 10% for galactosan, mannosan and levoglucosan, respectively. The concentrations of galactosan, mannosan and levoglucosan in particles of smoke samples ranged from 29 to 88, 23 to 69 and 77 to 380 ng/m3, respectively; and in particles of atmospheric aerosols ranged from 0.06 to 0.75, n.d. to 0.49 and 1.6 to 132 ng/m3, respectively. Levoglucosan was the dominant MAs detected in both type of samples. Less than 10% quantitation difference was obtained when bis-O-TMS derivatives were included in the calculation.  相似文献   

6.
Matrix-assisted laser desorption/ionization (MALDI) was used for the on-line analysis of single particles. An aerosol was generated at atmospheric pressure and particles were introduced into a time-of-flight (TOF) mass spectrometer through a single-stage differentially pumped capillary inlet. Prior to entering the mass spectrometer, a matrix was added to the particles using a heated saturator and condenser. A liquid matrix, 3-nitrobenzyl alcohol (NBA), and a solid matrix, picolinic acid (PA), were used. Particles were ablated with a 351 nm excimer laser and the resulting ions were mass-separated in a two-stage reflectron TOF mass spectrometer. Aerosol particles containing the biomolecules erythromycin and gramicidin S were analyzed with and without the matrix addition step. The addition of NBA to the particles resulted in mass spectra that contained an intact molecular ion mass peak. In contrast, PA-coated particles did not yield molecular ion peaks from matrix-coated particles.  相似文献   

7.
The influence of sample properties and composition on the size and concentration of aerosol particles generated by nanosecond Nd:YAG laser ablation at 213 nm was investigated for three sets of different materials, each containing five specimens with a similar matrix (Co-cemented carbides with a variable content of W and Co, steel samples with minor differences in elemental content and silica glasses with various colors). The concentration of ablated particles (particle number concentration, PNC) was measured in two size ranges (10–250 nm and 0.25–17 µm) using an optical aerosol spectrometer. The shapes and volumes of the ablation craters were obtained by Scanning Electron Microscopy (SEM) and by an optical profilometer, respectively. Additionally, the structure of the laser-generated particles was studied after their collection on a filter using SEM.  相似文献   

8.
The potential of front-face spectroscopy for grape ripening dates discrimination was investigated on Cabernet Franc grapes from three parcels located on the Loire Valley and for six ripening dates. The 18 batches were analysed by front-face fluorescence spectroscopy and visible spectroscopy. The excitation spectra (250-310 nm, emission wavelength = 350 nm) were characterised by a shoulder at 280 nm. Grapes spectra were classified by factorial discriminant analysis (FDA). Ripening dates were well predicted by fluorescence spectra: grapes before veraison were separated from grapes after veraison and almost every ripening date was identified. The common spectroscopic space obtained by CCSWA showed that wavelengths corresponding to anthocyanin absorption in the visible were correlated to fluorescence wavelengths around the starting and ending points of the shoulder (263 and at 292 nm). Then, regression models were investigated to predict total soluble solids (TSS), total acidity, malvidin-3G, total anthocyanins and total phenolics content from visible and fluorescence spectra. To predict technological indicators (TSS and total acidity), the PLS model with visible spectra (RMSECV = 0.82°Brix or 0.96 g L−1 H2SO4) was better than those with fluorescence one (RMSECV = 1.39°Brix or 2.06 g L−1 H2SO4). For malvidin-3G and total anthocyanins, all and were superior to 0.90 and RMSECV were low. Visible and fluorescence spectroscopies succeeded in predicting anthocyanin content. Concerning total phenolic, the best prediction was provided by fluorescence spectroscopy.  相似文献   

9.
The development of improved biomass pyrolysis models is vital for more accurate modelling and design of biomass conversion equipment. Such improved models must be based on reliable experimental data: biomass should be pyrolyzed at high heating rates and the reaction products should be measured using an on-line, non-intrusive method. Therefore, a heated grid reactor with heating rate of 300-600 K/s was used to study pyrolysis of biomass at temperatures in the range of 500-700 °C. The formation of formaldehyde and carbon monoxide from wood at high heating rates was successfully visualized using Laser-Induced Fluorescence (LIF). A thin vertical laser line or sheet was present directly above the biomass lying on the heated grid. Two-photon excitation at 230 nm was applied to induce fluorescence of carbon monoxide present in the volatiles, whereas excitation of formaldehyde was done at 355 nm. Visualization of these compounds shows that the release rises strongly with temperature; this typically happens on a timescale in the order of seconds. In principle, the method described allows for the determination of truly primary products. Future research is recommended, aimed at quantifying the concentrations measured by LIF. Care must be taken to calibrate for quenching of the fluorescence signal. Avoiding secondary reactions taking place in the gas phase is another experimental challenge.  相似文献   

10.
A method of aerosol introduction for matrix-assisted laser desorption/ionization (MALDI) is described. The aerosol particles containing matrix and analyte enter directly into the aerosol time-of-flight mass spectrometer (ATOFMS) at atmospheric pressure. The scattered light signals from the aerosol particles are collected by a photomultiplier tube (PMT) and are passed on to an external electronic timing circuit, which determines particle size and is used to trigger a 266 nm pulsed Nd:YAG laser. The aerosol MALDI mass spectra and aerodynamic diameter of single particles can be obtained in real-time. Compared with other methods of liquid sample introduction, this method realizes detection of single particles and, more importantly, the sample consumption is lower. The effects of matrix-to-analyte ratio and laser pulse energy on analyte ion yield are examined. The optimal matrix-to-analyte ratio and laser energy are 50-110:1 and 200-400 μJ respectively.  相似文献   

11.
The analytical utility of a tungsten (W)-coil atomization-laser-induced fluorescence (LIF) approach has been evaluated for trace level measurements of elemental chromium (Cr), arsenic (As), selenium (Se), antimony (Sb), lead (Pb), tin (Sn), copper (Cu), thallium (Tl), indium (In), cadmium (Cd), zinc (Zn) and mercury (Hg). Measurements of As, Cr, In, Se, Sb, Pb, Tl, and Sn were performed by laser-induced fluorescence using a single dye laser operating near 460 nm whose output was converted by frequency doubling and stimulated Raman scattering to wavelengths ranging from 196 to 286 nm for atomic excitation. Absolute limits of detection (LODs) of 1, 0.3, 0.3, 0.2, 1, 6, 1, 0.2 and 0.8 pg and concentration LODs of 100, 30, 30, 20, 100, 600, 100, 20, and 80 pg/mL were achieved for As, Se, Sb, Sn, In, Cu, Cr, Pb and Tl, respectively. Determinations of Hg, Pb, Zn and Cd were performed using two-color excitation approaches and resulted in absolute LODs of 2, 30, 5 and 0.6 pg, respectively, and concentration LODs of 200, 3000, 500 and 60 pg/mL, respectively. The sensitivities achieved by the W-coil LIF approaches compare well with those reported by W-coil atomic absorption spectrometry, graphite furnace atomic absorption spectrometry, and graphite furnace electrothermal atomization-LIF approaches. The accuracy of the approach was verified through the analysis of a multielement reference solution containing Sb, Pb and Tl which each had certified performance acceptance limits of 19.6-20.4 μg/mL. The determined concentrations were 20.05 ± 2.60, 20.70 ± 2.27 and 20.60 ± 2.46 μg/mL, for Sb, Pb and Tl, respectively. The results demonstrate that W-coil LIF provides good analytical performance for trace analyses due to its high sensitivity, linearity, and capability to measure multiple elements using a single tunable laser and suggest that the development of portable W-coil LIF instrumentation using compact, solid-state lasers is feasible.  相似文献   

12.
Relative mass transport efficiencies of near infrared (λ = 795 nm) femtosecond laser generated brass aerosols in helium were measured by ICP-MS applying different ablation cells with short and long washout times. It was found that the transport efficiencies are independent of the cell used within the mutual experimental uncertainties. This finding was confirmed by additional measurements providing the absolute particle mass transport efficiencies of femtosecond laser ablation in He. Here, the transport efficiencies were determined by weighing the samples before and after ablation with a micro-balance, collecting the particles by low-pressure impaction, and evaluating the impacted masses quantitatively by total reflection X-ray fluorescence. Within the experimental uncertainties (± 9–19%) the same absolute transport efficiency (about 77%) was found for all cells applied. This efficiency value can be regarded as a lower limit of the absolute mass transport efficiency since mass losses in the impactor are difficult to quantify.  相似文献   

13.
Total luminescence and synchronous fluorescence spectroscopies were tested as regards their ability to differentiate edible from lampante virgin olive oils. Total luminescence spectra were recorded by measuring the emission spectra in the range 350-720 nm at excitation wavelengths from 320 to 535 nm. The synchronous fluorescence spectra of 41 edible and 32 lampante virgin olive oils were acquired by synchronous scanning the excitation and emission monochromator maintained at an offset value of 80 nm. Classification of virgin olive oils based on their synchronous fluorescence spectra was performed by hierarchical cluster analysis and principal component analysis using the spectral range of 429-545 nm. Principal component analysis provided better discrimination between the two classes, without any classification error, while hierarchical cluster analysis allowed 97.3% correct classification. These results indicate the capability of fluorescence techniques to differentiate virgin olive oils according to their quality.  相似文献   

14.
This is the first study applying the technique of cold plasma ashing on polycarbonate filters as a preparative step for subsequent elemental analysis of aerosol particles by Total-Reflection X-ray fluorescence. The procedure has been validated by analyzing blanks of the filter material, chemicals used as additives as well as certified standard reference material. The results showed that cold plasma ashing is superior to conventional digestion methods with regard to the ease of sample preparation and contamination. A PIXE cascade impactor was used to collect size-fractionated aerosol particles in 9 size classes ranging from 16 to 0.06 µm aerodynamic diameter at an urban and a suburban site in Göteborg, Sweden. Filter segments loaded with the aerosol particles were cut out and fixed on Quartz carriers. After adding 10 ng of Ga as internal standard the samples were dried, digested by cold plasma ashing and analyzed by Total-Reflection X-ray fluorescence. The analysis of aerosol particles showed that elemental concentrations at both the urban and the suburban site in Göteborg were low compared to central Europe. More and concurrent sampling of size-fractionated particles is required to identify local sources of trace elements in the urban area of Göteborg.  相似文献   

15.
Ching-Lin Hsu 《Talanta》2009,80(2):1025-4425
A rapid and environmental-friendly injection-port derivatization with gas chromatography-mass spectrometry (GC-MS) method was developed to determine selected low-molecular weight (LMW) dicarboxylic acids (from C2 to C10) in atmospheric aerosol samples. The parameters related to the derivatization process (i.e., type of ion-pair reagent, injection-port temperature and concentration of ion-pair reagent) were optimized. Tetrabutylammonium hydroxide (TBA-OH) 20 mM in methanol gave excellent yield for di-butyl ester dicarboxylate derivatives at injection-port temperature at 300 °C. Solid-phase extraction (SPE) method instead of rotary evaporation was used to concentrate analytes from filter extracts. The recovery from filter extracts ranged from 78 to 95% with relative standard deviation (RSD) less than 12%. Limits of quantitation (LOQs) ranged from 25 to 250 pg/m3. The concentrations of di-carboxylated C2-C5 and total C6-C10 in particles of atmospheric aerosols ranged from 91.9 to 240, 11.3 to 56.7, 9.2 to 49.2, 8.7 to 35.3 and n.d. to 37.8 ng/m3, respectively. Oxalic acid (C2) was the dominant LMW-dicarboxylic acids detected in aerosol samples. The quantitative results were comparable to the results obtained by the off-line derivatization.  相似文献   

16.
We review applications of ultrafast laser pulses for aerosol analysis via linear and non-linear spectroscopy, including the most advanced techniques like coherent control of molecular excited states. We also discuss the capability of such pulses to influence the nucleation of atmospheric aerosols by assisting condensation of water in air.  相似文献   

17.
《Analytical letters》2012,45(8):894-906
Studies have been performed to evaluate a direct laser induced fluorescence (LIF) technique for measurements of atmospheric sulfur dioxide (SO2). The technique is novel in that it uses a nontunable laser source that is spectrally coincident with absorption of the SO2 molecule near 223 nm that allows sensitive measurements at environmentally relevant concentrations. In this report, the spectral characteristics and analytical capabilities of the nontunable LIF approach have been evaluated and preliminary measurements of ambient SO2 are reported. The current limit of detection is 0.5 ppb and compares well to other analytical spectroscopy methods used for atmospheric measurements of SO2. The results indicate strong feasibility for the nontunable LIF approach for SO2 measurements and suggest ways for method improvement.  相似文献   

18.
In the present study, we investigated remote laser-induced fluorescence (LIF), at a distance of 4.8 m, of a variety of natural minerals and rocks, and Hawaiian Ti (Cordyline terminalis) plant leaves. These minerals included calcite cleavage, calcite onex and calcite travertine, gypsum, fluorapatite, Dover flint and chalk, chalcedony and nephelene syenite, and rubies containing rock. Pulsed laser excitation of the samples at 355 and 266 nm often resulted in strong fluorescence. The LIF bands in the violet-blue region at approximately 413 and approximately 437 nm were observed only in the spectrum of calcite cleavage. The green LIF bands with band maxima in the narrow range of approximately 501-504 nm were observed in the spectra of all the minerals with the exception of the nephelene syenite and ruby rocks. The LIF red bands were observed in the range approximately 685-711 nm in all samples. Excitation with 532 nm wavelength laser gave broad but relatively low fluorescence background in the low-frequency region of the Raman spectra of these minerals. One microsecond signal gating was effective in removing nearly all background fluorescence (with peak at approximately 610 nm) from calcite cleavage Raman spectra, indicating that the fluorescence was probably from long-lifetime inorganic phosphorescence.  相似文献   

19.
Jiang Jiang 《Talanta》2007,72(1):113-118
An enrichment method for the herbicide glyphosate is presented based on ion exchange solid phase extraction (SPE) technique. A 200-μl micro-pipette tip packed with 50 mg of Bio-Rad AG1-X8 anion exchanger beads was used for offline extraction of glyphosate from 50 ml of spiked river water sample. The retained glyphosate was eluted with 10 mM HCl and then converted quantitatively to the corresponding amine (glycine) using hypochlorite. Subsequent fluorescent labeling using naphthalene-2,3-dicarboxaldehyde (NDA)-cyanide allowed micellar electrokinetic chromatography (MEKC) separation and laser-induced fluorescence detection (LIF) with a violet diode laser. Optimization of the sample clean-up, extraction, elution, conversion and labeling steps enabled analysis of glyphosate in river water in the nanomolar range. Detection limits were 0.04 nM glyphosate in standards and 1.6 nM in spiked river.  相似文献   

20.
The detection sensitivity of laser-induced breakdown spectroscopy (LIBS) is improved by coupling it with a laser-induced fluorescence method. A waterjet sample containing 500 ppm of Pb as an analyte was ablated by a 266 nm, frequency-quadrupled Q-switchedNd:YAG laser at an energy of ~ 260 μJ. After a short delay the resulting plume was re-excited with a 283.306 nm, nanosecond pulse dye laser at energies ranging from 45 to 100 nJ. The limit of detection (LOD) of lead in water was determined both by the single-pulse LIBS technique and Laser Ablation coupled with Laser-Induced Fluorecence (LA–LIF) method. It was found to be 75 ppm in the case of single-pulse LIBS and 4.3 ppm for LA–LIF. When the resonant pulse was detuned from the transition wavelength the LA–LIF signal disappeared demonstrating the resonant selectivity of this technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号