首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis of new stimulus-responsive block copolymer gelators using atom transfer radical polymerisation (ATRP) in either methanol or 2-propanol/water mixtures at 20 °C is described. Bifunctional and trifunctional initiators were used to prepare ABA triblock and I(BA)3 three-arm star diblock copolymers, respectively, using a ‘one-pot’ ATRP protocol, in which the central block comprised poly(glycerol monomethacrylate) and the outer blocks comprised pH-responsive poly[2-(diethylamino)ethyl methacrylate] or poly[2-(diisopropylamino)ethyl methacrylate]. These copolymers dissolve molecularly in acidic solution but formed free-standing gels at around neutral pH on addition of base. Gel strength was judged by both tube inversion experiments and shear rheometry measurements and a comparison between the linear and star architectures was made.  相似文献   

2.
The synthesis of amphiphilic triblock copolymers, poly(di[methylamine]ethyl methacrylate)‐b‐poly(cyclohexyl methacrylate)‐b‐poly(di[methylamine]ethyl methacrylate) PDMAE‐b‐PCH‐b‐PDMAE, has been performed by atom transfer radical polymerisation. Those have been obtained in a well‐controlled manner in terms of molecular weight and polydispersity index. The triblock copolymer characterisation has been made in condensed state and in solution. The existence of microphase separation has been confirmed by differential scanning calorimetry. However, the domains of both inner and outer blocks seem not to be ordered for one another from small‐angle X‐ray scattering (SAXS) measurements using synchrotron radiation. The micelle formation in dilute methanol solutions has been confirmed for all triblock copolymers by dynamic light scattering analyses. The size of these micelles has been demonstrated to be dependent on the molecular weight. Similar observations have been made in concentrate methanol solutions by using SAXS experiments, pointed also out that an increment of the intermicelle interactions is produced as the concentration increases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 85–92, 2008  相似文献   

3.
In this work, the syntheses of poly(butyl methacrylate-b-methyl methacrylate-b-butyl methacrylate) triblock copolymer and poly(methyl methacrylate-b-butyl methacrylate-b-methyl methacrylate-b-butyl methacrylate-b-methyl methacrylate) pentablock copolymers using copper mediated living radical polymerisation are reported. Living radical polymerisations were performed using the system CuIBr/N-(n-propyl)-2-pyridylmethanimine as catalyst in conjunction with a difunctional initiator, the 1,4-(2-bromo-2-methylpropionoto)benzene (1). The syntheses of poly(MMA), poly(BMA-b-MMA-b-BMA) and poly(MMA-b-BMA-b-MMA-b-BMA-b-MMA) are described in detail using 1H NMR spectroscopy and size exclusion chromatography. The living behaviour and the blocking efficiency of these polymerisations were investigated in each case. Difunctional initiator, 1, based on hydroquinone was synthesised and fully characterised and subsequently used to give difunctional poly(methyl methacrylate) macroinitiators with molecular weights up to 54,000 g mol−1 and polydispersity between 1.07 and 1.32; molecular weights were close to the theoretical values. The difunctional macroinitiators were used to reinitiate butyl methacrylate to give triblock copolymers of Mn between 17,500 and 45,700 g mol−1. Polydispersities remained narrow below 25,000 g mol−1 but broadened at higher masses. The difunctional triblock macroinitiators were subsequently used to reinitiate methyl methacrylate to give ABABA pentablock copolymers with Mn up to 37,000 g mol−1 with polydispersity=1.13. Under certain conditions radical-radical reaction led to a broadening of polydispersity index.  相似文献   

4.
Polystyrene‐block‐poly(2‐vinyl pyridine)‐block‐poly(methyl methacrylate) ABC triblock copolymers were synthesized by sequential living anionic polymerization. Their solution properties were investigated in toluene, which is a bad solvent for the middle block. Spherical micelles are formed, which consist of a poly(2‐vinyl pyridine) dense core bearing polystyrene and poly(methyl methacrylate) soluble chains at the corona. These micelles exhibit the architecture of heteroarm star copolymers obtained by “living” polymerization methods. The aggregation numbers strongly depend on the length of the insoluble P2VP middle block, thus remarkably affecting the size of the micelles.  相似文献   

5.
A new monomer, 2-methylene-7-oxabicyclo[2.2.1]heptane ( IV ) was synthesized via four steps. Its structure was confirmed by IR, 1H-NMR, and 13C-NMR spectra as well as elementary analysis. Free radical polymerization and copolymerization of IV were investigated. No homopolymer was obtained due to the effect of allyl inhibition. When IV copolymerized with electron-donor monomers, such as vinyl acetate and stvrene, IV acted as inhibitor for the polymerization of vinyl acetate, but could not inhibit the polymerization of styrene. However, the copolymers of IV with electron-accepting monomers, such as methyl methacrylate, acrylonitrile, or maleic anhydride (MA) were obtained. The contents of IV in the copolymers increased as e values of electron-accepting monomers increased. Strictly alternating copolymer was obtained only in the case of MA and IV . The thermal properties of copolymers were investigated. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Ziegler–Natta catalysts have played a major role in industry for the polymerization of dienes and vinyl monomers. However, due to the deactivation of the catalyst, this system fails to polymerize polar vinyl monomers such as vinyl acetate, methyl methacrylate, and methyl acrylate. Herein, a catalytic system composed of NdCl3⋅3TEP/TIBA is reported, which promotes a quasi‐living polymerization of dienes and is also active for the homopolymerization of polar vinyl monomers. Additionally, this catalytic system generates polymyrcene‐b‐polyisoprene and poly(myrcene)‐b‐poly(methyl methacrylate) diblock copolymers by sequential monomer addition. To encourage the replacement of petroleum‐based polymers by environmentally benign biobased polymers, polymerization of β‐myrcene is demonstrated with a catalytic activity of ≈106 kg polymer mol Nd−1 h−1.  相似文献   

7.
Poly(vinyl acetate)-b-polystyrene, poly(vinyl acetate)-b-poly(methyl acrylate) and poly(vinyl acetate)-b-poly(methyl methacrylate) block copolymers with low polydispersity (M(w)/M(n) < 1.25) were prepared by successive reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) employing a bromoxanthate iniferter (initiator-transfer agent-terminator).  相似文献   

8.
为了克服聚β-羟基丁酸酯(PHB)的弱点, 得到性能良好的新材料, 本文利用原子转移自由基聚合方法, 以Br-PHB-Br为大分子引发剂, 苯乙烯为单体, 在CuBr/N,N,N′,N″,N″-五甲基–二乙基三胺(PMDETA)催化体系作用下合成了一种新的三嵌段共聚物聚苯乙烯-聚β-羟基丁酸酯-聚苯乙烯(PS-PHB-PS). 共聚物的链结构利用1H NMR和13C NMR进行了表征, 分子量特性和链段组成利用凝胶渗透色谱(SEC)方法进行了测定. 聚合物的分子量随单体转化率的增加而线性增加, 分子量分布指数相对较窄. 这些特征都满足原子转移自由基活性聚合的理想要求. 所得到的共聚物PS-PHB-PS具有较好的生物相容性, 与PHB相比具有良好的耐热性.  相似文献   

9.
2-Dimethylaminoethyl methacrylate (DMAEMA) and 2-diethylaminoethyl methacrylate (DEAEMA) block copolymers have been synthesized by using poly(ethylene glycol), poly(tetrahydrofuran) (PTHF) and poly(ethylene butylenes) macroinitiators with copper mediated living radical polymerization. The use of difunctional macroinitiator gave ABA block copolymers with narrow polydispersities (PDI) and controlled number average molecular weights (Mn’s). By using DMAEMA, polymerizations proceed with excellent first order kinetics indicative of well-controlled living polymerization. Online 1H NMR monitoring has been used to investigate the polymerization of DEAEMA. The first order kinetic plots for the polymerization of DEAMA showed two different rate regimes ascribed to an induction period which is not observed for DMAEMA. ABA triblock copolymers with DMAEMA as the A blocks and PTHF or PBD as B blocks leads to amphiphilic block copolymers with Mn’s between 22 and 24 K (PDI 1.24-1.32) which form aggregates/micelles in solution. The critical aggregation concentrations, as determined by pyrene fluorimetry, are 0.07 and 0.03 g dm−1 for PTHF- and PBD-containing triblocks respectively.  相似文献   

10.
The synthesis of poly(vinyl chloride) (PVC) homopolymers and poly(vinyl chloride)-b-poly(hydroxypropyl acrylate)-b-poly(vinyl chloride) (PVC-b-PHPA-b-PVC) block copolymers via a single electron - degenerative transfer mediated living radical polymerisation was carried out on a pilot scale in industrial facilities. The thermal stability of the products was assessed conductimetrically. The block copolymers, that contained a low content of PHPA (below 12 wt.%), showed thermal stability that was approximately three times greater than that of conventional PVC. Inverse gas chromatography study of the copolymers surface showed that there was a decrease in the dispersive component and greater Lewis acidity and basicity constants were observed relative to those of PVC. The thermal stabilisation of PVC when in the presence of PHPA is explained by the interactions between its functional groups and the structures formed during the thermal degradation. The thermal stability and the surface properties of PVC-b-PHPA-b-PVC were strongly dependent on the molecular weight of the block copolymer. Lewis acid-base interaction parameters were determined and are interpreted as evidence of the PVC-b-PHPA-b-PVC compatibilising function in PVC-wood flour composites.  相似文献   

11.
This paper describes a versatile and effective method for the control of free radical polymerization and its use in the preparation of narrow polydispersity polymers of various architectures. Living character is conferred to conventional free radical polymerization by the addition of a thiocarbonylthio compound of general structure S=C(Z)SR, for example, S=C(Ph)SC(CH3)2Ph. The mechanism involves Reversible Addition-Fragmentation chain Transfer and, for convenience of referral, we have designated it the RAFT polymerization. The process is compatible with a very wide range of monomers including functional monomers such as acrylic acid, hydroxyethyl methacrylate, and dimethylaminoethyl methacrylate. Examples of narrow polydispersity (≤1.2) homopolymers, copolymers, gradient copolymers, end-functional polymers, star polymers, A-B diblock and A-B-A triblock copolymers are presented.  相似文献   

12.
The synthesis of vinyl alcohol copolymers is limited due to the poor radical reactivity of vinyl acetate (VAc), the traditional precursor to polyvinyl alcohol (PVA). Main group monomers such as BN 2-vinylnaphthalene (BN2VN) have attracted attention as alternatives to VAc to form side chain hydroxyls via oxidation, but outstanding questions of molecular weight control remain. Herein we report systematic investigation of solvent, temperature, and initiator concentration as factors influencing BN2VN degree of polymerization. We find increased chain transfer to toluene, hypothesized to arise from differences in radical stabilization and reactivity by aromatic and BN aromatic rings. As a result of these combined efforts, high molecular weight (Mw ~ 105 g mol−1) BN2VN homopolymers and BN2VN-styrene copolymers were obtained.  相似文献   

13.
Abstract

The free-radical copolymerization of ω-unsaturated oligo(methyl methacrylate) (1) with each of ethyl acrylate, styrene, methyl methacrylate, acrylonitrile, and vinyl acetate have been investigated. Incorporation of (1) into the polymer was observed in all cases although the molecular weights of the copolymers were substantially lower than those of the homopolymers obtained in the absence of (1) but under otherwise identical conditions. These experiments, together with a product study of the reactions of (1) with cyanoisopropyl radicals, have shown that the addition of free radicals to the double bond of (1) occurs readily. The sterically hindered radical so formed, however, undergoes facile β-scission, resulting in the termination of chains (chain transfer) in competition with chain propagation. The implications of these findings to the usefulness of (1) in the synthesis of graft copolymers and their relevance to the chemistry of free-radical polymerizations when methyl methacrylate is employed as a monomer or comonomer are discussed.  相似文献   

14.
An asymmetric difunctional initiator 2‐phenyl‐2‐[(2,2,6,6 tetramethylpiperidino)oxy] ethyl 2‐bromo propanoate ( 1 ) was used for the synthesis of ABC‐type methyl methacrylate (MMA)‐tert‐butylacrylate (tBA)‐styrene (St) triblock copolymers via a combination of atom transfer radical polymerization (ATRP) and stable free‐radical polymerization (SFRP). The ATRP‐ATRP‐SFRP or SFRP‐ATRP‐ATRP route led to ABC‐type triblock copolymers with controlled molecular weight and moderate polydispersity (Mw/Mn < 1.35). The block copolymers were characterized by gel permeation chromatography and 1H NMR. The retaining chain‐end functionality and the applying halide exchange afforded high blocking efficiency as well as maintained control over entire routes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2025–2032, 2002  相似文献   

15.
A metal‐free, cationic, reversible addition–fragmentation chain‐transfer (RAFT) polymerization was proposed and realized. A series of thiocarbonylthio compounds were used in the presence of a small amount of triflic acid for isobutyl vinyl ether to give polymers with controlled molecular weight of up to 1×105 and narrow molecular‐weight distributions (Mw/Mn<1.1). This “living” or controlled cationic polymerization is applicable to various electron‐rich monomers including vinyl ethers, p‐methoxystyrene, and even p‐hydroxystyrene that possesses an unprotected phenol group. A transformation from cationic to radical RAFT polymerization enables the synthesis of block copolymers between cationically and radically polymerizable monomers, such as vinyl ether and vinyl acetate or methyl acrylate.  相似文献   

16.

The synthesis of poly[(methyl methacrylate‐co‐hydroxyethyl methacrylate)‐b‐isobutylene‐b‐(methyl methacrylate‐co‐hydroxyethyl methacrylate)] P(MMA‐co‐HEMA)‐b‐PIB‐b‐P(MMA‐co‐HEMA) triblock copolymers with different HEMA/MMA ratios has been accomplished by the combination of living cationic and anionic polymerizations. P(MMA‐co‐HEMA)‐b‐PIB‐b‐P(MMA‐co‐HEMA) triblock copolymers with different compositions were prepared by a synthetic methodology involving the transformation from living cationic to anionic polymerization. First, 1,1‐diphenylethylene end‐functionalized PIB (DPE‐PIB‐DPE) was prepared by the reaction of living difunctional PIB and 1,4‐bis(1‐phenylethenyl)benzene (PDDPE), followed by the methylation of the resulting diphenyl carbenium ion with dimethylzinc (Zn(CH3)2). The DPE ends were quantitatively metalated with n‐butyllithium in tetrahydrofuran, and the resulting macroanion initiated the polymerization of methacrylates yielding triblock copolymers with high blocking efficiency. Microphase separation of the thus prepared triblock copolymers was evidenced by the two glass transitions at ?64 and +120°C observed by differential scanning calorimetry. These new block copolymers exhibit typical stress‐strain behavior of thermoplastic elastomers. Surface characterization of the samples was accomplished by angle‐resolved X‐ray photoelectron spectroscopy (XPS), which revealed that the surface is richer in PIB compared to the bulk. However, a substantial amount of P(MMA‐co‐HEMA) remains at the surface. The presence of hydroxyl functionality at the surface provides an opportunity for further modification.  相似文献   

17.
Poly(N‐vinyl pyrrolidone)‐block‐poly(N‐vinyl carbazole)‐block‐poly(N‐vinyl pyrrolidone) (PVP‐b‐PVK‐b‐PVP) triblock copolymers were synthesized via sequential reversible addition‐fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process. First, 1,4‐phenylenebis(methylene)bis(ethyl xanthate) was used as a chain transfer agent to mediate the radical polymerization of N‐vinyl carbazole (NVK). It was found that the polymerization was in a controlled and living manner. Second, one of α,ω‐dixanthate‐terminated PVKs was used as the macromolecular chain transfer agent to mediate the radical polymerization of N‐vinyl pyrrolidone (NVP) to obtain the triblock copolymers with various lengths of PVP blocks. Transmission electron microscopy (TEM) showed that the triblock copolymers in bulks were microphase‐separated and that PVK blocks were self‐organized into cylindrical microdomains, depending on the lengths of PVP blocks. In aqueous solutions, all these triblock copolymers can self‐assemble into the spherical micelles. The critical micelle concentrations of the triblock copolymers were determined without external adding fluorescence probe. By analyzing the change in fluorescence intensity as functions of the concentration, it was judged that the onset of micellization occurred at the concentration while the FL intensity began negatively to deviate from the initial linear increase with the concentration. Fluorescence spectroscopy indicates that the self‐assembled nanoobjects of the PVP‐b‐PVK‐b‐PVP triblock copolymers in water were capable of emitting blue/or purple fluorescence under the irradiation of ultraviolet light. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1852–1863  相似文献   

18.
This paper reports the free radical dispersion copolymerisation of methyl and ethyl methacrylate in supercritical carbon dioxide. The polymerisation uses a poly(dimethyl siloxane) monomethacrylate macromonomer as the stabiliser. A range of different reaction times was investigated in order to probe the amount of each monomer incorporated in the copolymer. Analysis by 1H NMR spectroscopy reveals that the monomers behave as in conventional solvents to form a random copolymer. The effect of varying the initiator concentration (initiator 2,2′‐azobisisobutyronitrile, AIBN) on the composition and molecular weights of the resultant copolymers has also been studied.  相似文献   

19.
The synthesis of silicone–vinyl block copolymers has been studied by the use of poly(azo-containing siloxaneamide)s (abbreviated as PASAs), i.e., polysiloxane (azobiscyanopentanamide)s as macroazoinitiators. PASAs with number-average molecular weight of 12000–31000 and with siloxane chain lengths of 250–9800 were prepared by the condensation of azobiscyanopentanoyl chloride and α,ω-bis(3-aminopropyldimethyl)polysiloxanes in equimolar feeds. Several kinds of silicone–vinyl block copolymers were synthesized by radical polymerization of vinyl monomers such as methyl methacrylate, styrene, and vinyl acetate, in the presence of PASA in homogeneous media. The block copolymers with siloxane contents up to 30 mol % were then characterized on the basis of infrared absorption, proton NMR spectra, and gel permeation chromatography.  相似文献   

20.
Five A-B-A′, A-C-A′, B-A-B′, C-A-C′, and C-B-C′ triblock terpolymers with block orders difficult to synthesize by sequential polymerization have been successfully synthesized by a new methodology combining living anionic polymers with a specially designed linking reaction using α-phenylacrylate as the reaction site. Here, A(A′), B(B′), and C(C′) represent groups of polymers (having chain-end anions with different nucleophilicities), which are only polymerizable from A(A′) to B(B′) to C(C′) via sequential polymerization. The corresponding polymers are polystyrene (A) and poly(α-methylstyrene) (A′), poly(2-vinylpyridine) (B) and poly(4-vinylpyridine) (B′) and polymers from methacrylate type monomers like poly(methyl methacrylate) (C), poly(tert-butyl methacrylate) (C′), poly(2-hydroxyethyl methacrylate) (C′), poly(2,3-dihydroxypropyl methacrylate) (C′), and poly(ferrocenylmethyl methacrylate) (C′). Furthermore, three synthetically difficult B-A-B, C-A-C, and C-B-C triblock copolymers with molecular asymmetry in both side blocks have also been synthesized by the developed methodology. All of the polymers thus synthesized are quite new triblock terpolymers and copolymers with well-defined structures, i.e., precisely controlled molecular weights, compositions and narrow molecular weight distributions (Mw/Mn ≤ 1.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号