首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dialkynyl complexes cis-[Pt(C CR)2L2] [R = Ph, L2 = 2PPh3, 2PEt3, dppe (dppe = 1,2-bis(diphenylphosphino)ethane]; R ---tBu, L2 = 2PPh3, dppe) react with silver perchlorate in a molar ratio 1:0.5 to give platinum-silver perchlorate salts of the type [Pt2 Ag(C CR)4L4](ClO4) in excellent yield. The X-ray crystal structure of [Pt2Ag(C = CPh)4(PPh3)4](ClO4) 1 shows that the cation is formed by two nearly orthogonal cis-[Pt(C CPh)2(PPh3)2] units connected through a silver cation which is unsymmetrically π-bonded to all four acetylene fragments. Similar reactions of cis-[Pt(C CR)2L2] with one equivalent of AgClO4 afford cationic complexes of general formula [PtAg(C CR)2L2](ClO4), which are believed to be salts, [Pt2Ag2(C CR)4L4](ClO4)2.  相似文献   

2.
Six mononuclear complexes [M(L1)2(H2O)4] (M = Co(II), 1a and M = Mn(II), 1b), [Cu(L1)2(H2O)2] (1c), [Cu(L1)2(H2O)(Py)2] (1d), [Cu(L3)(H2O)Cl] · H2O (3a) and [Co(Sal)(H2O)(Py)3] · 2ClO4 · H2O (3b) of phenoxyacetic acid derivatives and Schiff base were determined by single crystal X-ray diffraction. The Co(II) (1a) and Mn(II) (1b) complexes are isomorphous. X-ray crystal structural analyses reveal that these coordination complexes form polymeric structure via formation of different types of hydrogen bonding and π-stacking interactions in solid. Thermal analysis along with the powder X-ray diffraction data of these complexes shows the importance of the coordinated and/or crystal water molecules in stabilizing the MOF structure. Complexes 1a, 1c, 3a show marginal catalytic activity in the oxidation of olefins to epoxides in the presence of i-butyraldehyde and molecular oxygen.  相似文献   

3.
Oxidative addition of ethyl iodide to PdMe2(2,2′-bipyridyl) in (CD3)2CO gives the unstable “PdIMe2Et(bpy)”, which undergoes reductive elimination to form PdIR(bpy) (R = Me, Et), ethane, and propane. Ethene and palladium metal are also formed, and are attributed to decomposition of PdIEt(bpy) via β-elimination. Similar results are obtained with n-propyl iodide, although a palladium(IV) intermediate was not detected, but CH2=CHCH2X (X = Br, I) and PhCH=CHCH2Br give isolable complexes fac-PdXMe2(CH2CH=CHR)(L2) (R = H, Ph; L2 = bpy, phen). The propenyl complexes decompose at ambient temperature to form ethane, a trace of PdXMe(L2), and mixtures of [Pd(η3-C3H5)(L2)]X and [Pd(η3-C3H5)(L2)]-[Pd(η3-C3H5)X2]; for fac-PdBrMe2(CH2CH=CH2)(bpy) the major palladium(II) product is [Pd(η3-C3H5)(bpy)]Br.  相似文献   

4.
The reaction of the anionic mononuclear rhodium complex [Rh(C6F5)3Cl(Hpz)]t- (Hpz = pyrazole, C3H4N2) with methoxo or acetylacetonate complexes of Rh or Ir led to the heterodinuclear anionic compounds [(C6F5)3Rh(μ-Cl)(μ-pz)M(L2)] [M = Rh, L2 = cyclo-octa-1,5-diene, COD (1), tetrafluorobenzobarrelene, TFB (2) or (CO)2 (4); M = Ir, L2 = COD (3)]. The complex [Rh(C6F5)3(Hbim)] (5) has been prepared by treating [Rh(C6F5)3(acac)] with H2bim (acac = acetylacetonate; H2bim = 2,2′-biimidazole). Complex 5 also reacts with Rh or Ir methoxo, or with Pd acetylacetonate, complexes affording the heterodinuclear complexes [(C6F5)3Rh(μ-bim)M(L2)] [M = Rh, L2 = COD (6) or TFB (7); M = Ir, L2 = COD (8); M = Pd, L2 = η3-C3H5 (9)]. With [Rh(acac)(CO)2], complex 5 yields the tetranuclear complex [{(C6F5)3Rh(μ-bim)Rh(CO)2}2]2−. Homodinuclear RhIII derivatives [{Rh(C6F5)3}2(μ-L)2]·- [L2 = OH, pz (11); OH, StBu (12); OH, SPh (13); bim (14)] have been obtained by substitution of one or both hydroxo groups of the dianion [{Rh(C6F5)3(μ-OH)}2]2− by the corresponding ligands. The reaction of [Rh(C6F5)3(Et2O)x] with [PdX2(COD)] produces neutral heterodinuclear compounds [(C6F5)3Rh(μ-X)2Pd(COD)] [X = Cl (15); Br (16)]. The anionic complexes 1–14 have been isolated as the benzyltriphenylphosphonium (PBzPh3+) salts.  相似文献   

5.
Dennis P. Arnold 《Polyhedron》1986,5(12):1957-1963
Visible absorption and 1H NMR spectra have been measured for a series of octahedral tin(IV) porphyrin complexes Sn(TPP)X2, where TPP is mes-tetraphenylporphyrin and X is Cl, OH, OMe, OAc, NO3, ClO4, Br, I, NCS and OC6H4-p-Me. The tin-proton coupling constants to the β-pyrrole protons decrease from 19.2 Hz (X = ClO4) to 9.9 Hz (X = OME), and for the oxygen-bound ligands, correlate well with the basicity of the ligands. The halides do not fit this relationship, perhaps because of π-bonding effects. The chemical shifts of the β-protons also depend on the nature of X, and vary from 9.35 (X = ClO4) to 9.04 (X = OC6H4-p-Me) ppm. Increasing basicity of X causes red shifts in the visible spectra, as well as a decrease in the molar absorption coefficient ratio (β/) for the visible absorption bands. Tin-proton coupling constants for the axial ligands OH, OMe and OAc are reported. The complex Sn(TPP)(ClO4)2 exhibits unusual NMR behaviour in CDCl3 solutions, possibly due to self-aggregation.  相似文献   

6.
Raman Batheja  Ajai K. Singh 《Polyhedron》1997,16(24):4337-4345
The nucleophile [ArTe] generated in situ borohydride solution of Ar2Te2, reacts with 2-(chloromethyl) tetrahydrofuran and 2-(2-bromoethyl)-1,3-dioxolane resulting in L1 and L2, respectively. The complexes of palladium(II) and platinum(II) with L1/L2 having stoichiometries [MCl2·L2], [ML2](ClO4)2, [(DPPE)ML2](ClO)4)2, [(PPh3)2ML2](ClO4)2 and [(phen)ML2](ClO4)2 (where L = L1/L2 DPPE = Ph2PC H2CH2PPh2, PHEN = 1,10-phenanthroline and M = Pd/Pt) have been synthesized. IR, 1H, 125Te{1H} and 31P{1H} NMR and UV-vis spectral data of these species in conjunction with their molar conductance and molecular weight data have been used to authenticate the new species. In all complexes (1–20) the ligands L1 and L2 are coordinated through tellurium and in the complexes of formula [ML2](ClO4)2 (M = Pd, Pt) the ligand is bidentate with the oxygen atom used in complexation. In solution, complexes PtCl2L2 exist as a mixture of cis and trans isomers whereas only the trans isomer was observed for the palladium analogues. The [(phen)PdL2](ClO4)2(Q) quenches 1O2 readily. The plot of log [Q] vs time is linear. Mechanism compatible with the experimental observations is proposed.  相似文献   

7.
The complexes [WI2(CO)L22-RC2R)] (L = PEt3 or PMe2Ph; R = Me or Ph) react with an equimolar quantity of Ag[BF4] in acetonitrile at room temperature to give good yields of the new purple cationic alkyne complexes [WI(CO)(NCMe)L22-RC2R)][BF4]. 31P NMR spectroscopy indicates that the phosphines are trans to each other in these compounds. 13C NMR spectroscopy suggests that the alkyne ligands are donating four electrons to the tungsten in these complexes.  相似文献   

8.
光催化具有无污染、安全高效等优点,已成为环保领域的研究热点。 本文选择2,4-二(3,5-二甲基吡唑)-6-二乙基胺-1,3,5-三嗪(L1)和2, 6-二[3-(5-甲基吡唑基)]吡啶(L2)为配体、以RuCl3为金属源,合成了3种配合物[Ru(L1)Cl3](1)、[Ru(L2)2]·Cl3(2)和[Ru(L2)2]·(H2BTC)·(HBTC)·H2O(3),同时进行了IR、UV-Vis、TG及X射线衍射等表征,并对配合物在光催化降解罗丹明B方面进行了探讨,结果表明,配合物13均具有一定程度的光降解效果,降解效果分别为46.8%、44.7%和40.4%。 相同条件下,加入H2O2后的配合物13的降解效果比金属盐、配体及H2O2单独存在时的降解效果好。  相似文献   

9.
Microcalorimetric measurements were made on copper(II) and nickel(II) complexes of the Schiff base (L) derived from 2-(2-aminophenyl)benzimidazole and salicylaldehyde. The complexes were of the general type MX2L2 with M = Cu or Ni, and X = Cl, Br, NO3 or ClO4. The enthalpies of decomposition of the solid complexes to solid products, MX2 and L, were derived. Despite showing some variation depending on the anion, the average binding enthalpy of the ligand to nickel was 47.5 ± 7.3 kJ mol−1, greater than that to copper, 16.8 ± 3.5 kJ mol−1 by 30.7 ± 8.1 kJ mol−1.  相似文献   

10.
Four novel tetranuclear macrocyclic complexes of the formula [(CuLi)3Fe](ClO4)3·3H2O (i=1–4, Li are the dianions of the [14]N4 and [15]N4 macrocyclic oxamides, namely 2,3-dioxo-5,6:13,14-dibenzo-7,12-bis(ethoxycarbonyl)-1,4,8,11-tetraazacyclotetradeca-7,11-diene, 2,3-dioxo-5,6:13,14-dibenzo-9-methyl-7,12-bis(ethoxycarbonyl)-1,4,8,11-tetraazacyclotetradeca-7,11-diene and 2,3-dioxo-5,6:14,15-dibenzo-7,13-bis(ethoxycarbonyl)-1,4,8,12-tetraazacyclotetradeca-7,12-diene] have been prepared and characterized. These complexes are the first examples of oxamido-bridged Cu(II)–Fe(III) heterometallic species. Cryomagnetic studies on [(CuL1)3Fe](ClO4)3·3H2O (1) and [(CuL3)3Fe](ClO4)3·3H2O (3) (77–300 K) revealed that the Cu(II) and Fe(III) ions interact antiferromagnetically through the oxamido bridge, with the exchange integral J=−30.8 cm−1 for 1 and J=−28.7 cm−1 for 3 based on . The interaction parameters have been compared with that of the related [Cu3Mn] compound.  相似文献   

11.
Reaction of [18]aneS6 with two molar equivalents of [Cu(NCMe)4](ClO4) in CH2Cl2-MeCN affords the binuclear copper(I) complex [Cu2([18]aneS6)(NCMe)2](ClO4)2. The single crystal X-ray structure of the complex shows a centrosymmetric cation with two tetrahedral copper(I) centres each coordinated to three thioether S-donors of [18]aneS6,Cu---S(1) = 2.3200(15), Cu---S(4) = 2.3415(16), Cu---S(7) = 2.3250(15) Å, and to one MeCN molecule, Cu---N(1) = 1.939(5) Å, to give an overall NS3-donation at the metal centres. Additionally, S(7′) shows a long-range interaction, Cu …S(7′) = 3.318(2) Å thus distorting the coordination geometry of the metal ion towards trigonal bipyramidal. The metal-metal separation of 4.428(2) Å suggests that there is no significant interaction between the copper centres of the dimer. Reaction of [9]aneS3 with one molar equivalent of [Cu(NCMe)4](ClO4) in refluxing MeCN in the presence of ligands, L, affords the adducts [Cu([9]aneS3)L]+ (L = PPh3, AsPh3). The single crystal X-ray structure of the complex [Cu([9]aneS3)(AsPh3)](ClO4) shows tetrahedral AsS3 coordination at copper(I) with [9]aneS3 bound facially to the metal centre, Cu---S = 2.303(6), Cu---As = 2.322(4) Å.  相似文献   

12.
Reaction of L {L = [24]aneS8, [28]aneS8} with two molar equivalents of [Cu(NCMe)4]X (X = ClO4, BF4, PF6) in MeCN affords the white binuclear copper(I) complexes [Cu2(L)]2+. A single crystal X-ray structure determination of [CU2([24]aneS8)](BF4)2 shows two tetrahedral copper(I) centres, each of which is coordinated to four thioether sulphur-donors, Cu---S(1) = 2.263(3), Cu---S(4) = 2.363(3), Cu---S(7) = 2.349(3), Cu---S(10) = 2.261(3) Å. The Cu … Cu distance is 5.172(3) Å. A single crystal X-ray structure determination Of [CU2([28]aneS8)](ClO4)2 shows that this complex also contain two tetrahedral copper(I) centres, each coordinated to four thioether sulphur-donors, Cu---S(1) = 2.278(5), Cu---S(4) = 2.333(5), Cu---S(8) = 2.328(5), CU---S(11) = 2.268(5) Å. The Cu … Cu distance of 6.454(3) Å is greater than in [CU2([24]aneS8)]2+ , reflecting the greater cavity size in [CU2([28]aneS8)]2+. Cyclic voltammetry of [CU2([24]aneS8)]2+ and [CU2([28]aneS8)]2+ at platinum electrodes in MeCN (0.1 M nBU4NPF6) shows irreversible oxidations at Epa, = +0.88 V, +0.92 V vs Fc/Fc+, respectively, at a scan rate of 200 mV s−1. Coulometric measurements in MeCN confirm these oxidations to be two-electron (one electron per copper) processes to give binuclear copper(II) species. Oxidation of the binuclear copper(I) precursors with H2SO4 or HNO3 affords ESR-active copper(II) species which presumably incorporate SO42− and NO3 bridges.  相似文献   

13.
Mononuclear copper(II) complexes of a family of pyridylmethylamide ligands HL, HLMe, HLPh, HLMe3 and HLPh3, [HL = N-(2-pyridylmethyl)acetamide; HLMe = N-(2-pyridylmethyl)propionamide; HLPh = 2-phenyl-N-(2-pyridylmethyl)acetamide; HLMe3 = 2,2-dimethyl-N-(2-pyridylmethyl)propionamide; HLPh3 = 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide], were synthesized and characterized. The reaction of copper(II) salts with the pyridylmethylamide ligands yields complexes [Cu(HL)2(OTf)2] (1), [Cu(HLMe)2](ClO4)2 (2), [Cu(HL)2Cl]2[CuCl4] (3), [Cu(HLMe3)2(THF)](OTf)2 (4), [Cu(HLMe3)2(H2O)](ClO4)2 (5a and 5b), [Cu(HLPh3)2(H2O)](ClO4)2 (6), [Cu(HL)(2,2′-bipy)(H2O)](ClO4)2 (7), and [Cu(HLPh)(2,2′-bipy)(H2O)](ClO4)2 (8). All complexes were fully characterized, and the X-ray structures vary from four-coordinate square-planar, to five-coordinate square-pyramidal or trigonal-bipyramidal. The neutral ligands coordinate via the pyridyl N atom and carbonyl O atom in a bidentate fashion. The spectroscopic properties are typical of mononuclear copper(II) species with similar ligand sets, and are consistent their X-ray structures.  相似文献   

14.
The newly synthesized simple tripodal ligand tris-[2-(naphthalen-2-yloxy)-ethyl]-amine (L1) act as a fluorescence signaling system for aromatic guest. It forms inclusion complexes with several electron deficient aromatic compounds. This inclusion phenomenon has been studied by steady-state fluorescence spectroscopy and solid-state structural analysis. Electron-rich L1 shows dramatic color change and a concomitant quenching of luminescence in solution as well as solid phase when titrated with several other electron deficient aromatic guest molecules. Rather high selectivity towards the picric acid was observed. L1 simultaneously forms inclusion complex and organic salt co-crystal with the composition [(L1H+) (Pic)]  PicH (PicH = picric acid) when crystallized in the presence of picric acid. In the solid state, it forms a strong π–π, C–Hπ and C–HO type interactions.  相似文献   

15.
The reaction of K[H6ReL2] with [RuHCl(CO)(PPh3)3−x {P(OPri}3)x](L2 = (PMePh2)2, dppe, (AsPh3)2, or (PPh3)2; x = 0, 1 or 2) leads to [L2(CO)HRe(μ-H)3RuH(PPh3)2−y{P(OPri)3}y] (x = 0 or 1, Y = 0; X = 2, Y = 1(L2 = PPh3)) in a first step. Under the reaction conditions most of these complexes react rapidly with the liberated phosphine giving [L2(CO)Re(μ-H)3Ru(PPh3)3−y- {P(OPri)3}y] (L2 = (PMePh2)2 or dppe, Y = 0; L2 = (PPh3)2, Y = 1) as the only iso complexes. The structure of [(PMePh2)2(CO)Re(μ-H)3Ru(PPh3)3] has been establishedby X-ray structure analysis. The complex [(PPh3)2(CO)Re(μ-H)3Ru(PPh3)2(P(OPri)3)] reacts with molecular hydrogen under pressure to generate [L2(CO)HRe(μ-H)3RuH(PPh3)(P(OPri)3) as the sole product.  相似文献   

16.
Diethylzinc reacts with hydroperchlorates of N-alkylated 1,3,5-triazacyclohexanes (R3TAC; R = methyl (Me), benzyl (Bz), isopropyl (iPr)) and with the hydrotetrafluoroborate of 1,3,5-tris-(para-fluorobenzyl)-1,3,5-triazacyclohexane (FBz3TAC) to give the corresponding cationic zinc ethyl complexes [(R3TAC)Zn(Et)][X] (X = ClO4, BF4). Similar complexes were obtained from diethylzinc treated with [HNMe2Ph][BF4] or [HNMe2Ph][B(C6F5)4](Et2O) in the presence of R3TAC (R = Bz, FBz, s-1-phenylethyl (s-PhMeCH)). A product of decomposition of [(Bz3TAC)Zn(Et)][ClO4] was analyzed by X-ray diffraction. The structures of [({s-PhMeCH}3TAC)Zn(Et)][BF4] an [(FBz3TAC)Zn(Et)][BF4] were estimated using nuclear Overhauser enhancement spectroscopy. Protonolysis of diethylzinc with [HNMe2Ph][BF4] in the presence of 13-benzyl-1,5,9-triazatricyclo[7.3.1.05,13]-tridecane (BzTATC) yielded the complex [(BzTATC)Zn(Et)][BF4].  相似文献   

17.
Oxometal complexes of molybdenum and tungsten in high oxidation states from stable adducts with 1,3-dimethylimidazoline-2-ylidene (L) 1. The first ‘carbene’ complexes of molybdenum(VI) [MoO2Cl(L)3]Cl (3a) and tungsten(VI) WO2Cl2(L)2 (4b) are reported.  相似文献   

18.
Dan Wang  Shi-Xiong Liu   《Polyhedron》2007,26(18):5469-5476
Reactions among Cu(ClO4)2 · 6H2O, Cu(acac)2/VO(acac)2 and 3-methoxysalicylaldehyde Picoloylhydrazone in different solvents give three complexes, [Cu2L(acac)(H2O)2]ClO4 (1), [Cu4L2(acac)2(py)2](ClO4)2 (2) and (VO2)2L2Cu2(acac)2 (3) (acac = acetyl acetonate and py = pyridine). There is an extended 2D structure in complex 1 constructed by hydrogen bonds between the binuclear complex cation and the ClO4 anion, and an extended 1D structure in complex 2 constructed by weak ππ stacking interactions between neighboring cyclic tetranuclear complex molecules. Complex 3 is the first oxovanadium–copper complex with a bridging oxo oxygen atom between the V atom and the Cu atom. The solid-state photoluminescent properties of the three title complexes have been studied. There is an antiferromagnetic interaction in 1.  相似文献   

19.
Liquid crystalline 4-XC6H4N=NC6H4X-4′ [X = C4H9 (1a), C1OH21 (1b), OC4H9 (1c), OC8H17(1d)] can be easily prepared in high yields from the corresponding anilines. In order to study the influence of metals on the thermal properties of these materials, we have obtained adducts [AuCl 3(4-C4H9OC6H4N=NC6H4OC4H9-4′)] (2) and [Ag(OC1O3)L2] [L = 4-XC6H4N=NC6H4X-4′; X = OC4H, (3a), OC8H17 (3b)]. The silver adducts show themotropic behaviour. Mercuriation of dialkylazobenzenes 1a-b takes place with [Hg(OAc)2] and LiCl to give [Hg(R)Cl] [R = C6H3(N=NC6H4X-4′)-2, X-5; X = C4H9 (bpap) (4a), C10H21 (dpap) (4b)] while dialkoxyazobenzenes 1c–d require [Hg (OOCCF3)2] to obtain [Hg(R)Cl] [R = C6H3(N---NC6H4X-4′)-2, X-5; X = OC4H9 (bxpap) (4c), OC 8H17 (4d)]. 4a-c react with NaI to give [HgR2] [R= bpap (5a), dpap (5b), bxpap (5c), oxpap (5d)l. Both chloroaryl-, 4a and 4c, and diaryl-mercurials, 5a and 5c, act readily as transmetailating agents towards [Me4N] [AuCl4] in the presence of [Me4N]Cl to give [Au(η2-R)Cl2] [R = bpap (6a), bxpap (6b)]. After reaction of [AuCl 3(tht)] (tht = tetrahydrothiophene) with [Me4N]Cl and 4b (1:2:1), [Me4N][Au(dpap)Cl3] (7) can be isolated. C---H activati bxpap (8b)]. None of the complexes 4–8 shows mesomorphic behaviour.  相似文献   

20.
An S,S′-thioether—thioester chelating ligand [7,8-μ-SCH2C(O)S-7,8-C2B9H10] (L1), incorporating the unit [—(C)2B9H10] has been synthesized. Reactions have been conducted with RhCl(PPh3)3 and PdCl2(PPh3)2 complexes in ethanol. With Rh, L1 maintains its original cyclic nature and most probably chelation via thioether—thioester takes place. The carborane negative charge may stabilize this original thioether—thioester complex. The other two Rh positions are occupied by two PPh3 ancillary ligands forming [Rh(L1)(PPh3)2]. The reaction of L1 with Pd induces ligand modifications and the cyclic nature of L1 is lost. A transesterification process leading to a dianionic ligand L2, [7-S-8-SCH2C(O)OCH2CH3−7,8-C2B9H10]2− has taken place. In this way L2 is capable of compensating the dipositive Pd charge. The other two Pd positions are occupied by two PPh3. This reaction has been extended to methanol and isopropanol solvents. The crystal structure of [Pd(L2)(PPh3)2] has been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号