首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
巯基乙酸为稳定剂在MWCNTs上原位生长CdSe量子点   总被引:1,自引:0,他引:1  
以巯基乙酸作为稳定剂在无毒的溶剂中和较低的温度下实现了CdSe量子点在MWCNTs(多壁碳纳米管)上的原位生长,并用TEM、HRTEM、EDS、XRD、XPS和PL等工具对CdSe量子点-MWCNTs异质结(CdSe-MWCNTs)进行了表征.结果表明, CdSe量子点的晶型为立方晶型,平均粒径大约为4 nm, CdSe-MWCNTs也具有一定的荧光性质.  相似文献   

2.
Nearly monodispersed CdSe quantum dots have been prepared by a soft solution approach using air-stable reagents at lower temperature. The temporal evolution of the absorption and room temperature photoluminescence spectra were used to follow the reaction process and to characterize the optical properties of as-prepared CdSe quantum dots. The results exhibited clear exciton peaks in absorption and bright band-edge luminescence. The structures of the CdSe nanocrystals were determined by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The influence of the temperature on the properties of the resultant CdSe nanocrystals was investigated. The distribution of properties within ensembles of CdSe nanocrystals was also studied. A drastic difference in the photoluminescence efficiencies of size-selected fractions was observed.  相似文献   

3.
CdSe nanoparticles of improved stability against aggregation were synthesized by using amphiphilic block copolymer polyacrylonitrile-block-poly(ethylene glycol)-block-polyacrylonitrile (PAN-b-PEG-b-PAN, PEA). The products were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopic (HRTEM). The optical properties were characterized by UV-vis spectrophotometer and the room temperature photoluminescence (PL). The results revealed that the CdSe nanoparticles have been uniformly distributed throughout the copolymer with diameters of 6-7 nm and the produced novel hybrid nanocomposites displayed obviously quantum size effects and interesting fluorescence features. FTIR results provided the information on the interaction between the copolymer and the nanoparticles. The TGA revealed that the thermal property of the copolymer enhanced due to the interaction of the nanoparticles and the groups of the copolymer.  相似文献   

4.
用L-半胱氨酸(L-cysteine)作为稳定剂,以制备的CdTe量子点为核模板,水相合成了具有近红外发光的Ⅱ型核壳CdTe/CdSe半导体量子点。实验考察了合成温度,核模板的尺寸和组分比等因素对合成高质量的CdTe/CdSe量子点的影响。用紫外-可见吸收和荧光光谱研究了合成的量子点的光学性质。在优化的合成条件下,荧光发射光谱在586~753nm范围连续可调,荧光量子产率高达68%;通过X-射线衍射(XRD),X射线光电子能谱(XPS)和透射电镜(TEM)对合成的Ⅱ型核壳CdTe/CdSe量子点进行了结构和形貌表征。  相似文献   

5.
The present study describes a stabilization of single quantum dot (QD) micelles by hydrophobic silica precursors and an extension of the silica layer to form a silica shell around the micelle. The obtained product consists of up to 92% of single nanocrystals (CdSe, CdSe/ZnS, or CdSe/ZnSe/ZnS quantum dots) in the silica micelles, coated with silica shell. The thickness of silica shell could vary, starting from 3 to 4 nm. Increasing the shell thickness increases the photoluminescent characteristics of QDs in aqueous solution. The silica-shelled single CdSe/ZnS QD micelles possess a high quantum yield in aqueous solution, a controlled small size, sharp photoluminescence spectra (fwhm approximately 30 nm), an absence of aggregation, and a high transparency. The presence of a hydrophobic layer between the QD and silica shell ensures an incorporation of other hydrophobic molecules (with interesting properties) in the close proximity of nanocrystal. Thus, it is possible to combine the characteristics of hybrid material with the priority of small size. The nanoparticles are amino functionalized and ready for conjugation. A comparatively good biocompatibility is demonstrated. The nanoparticles show ability for intracellular delivery and are noncytotoxic during long-term incubation with viable cells in the absence of light exposure, which makes them appropriate for cell tracing and drug delivery.  相似文献   

6.
在表面活性剂十六烷基三甲基溴化铵(CTAB)的辅助下,以乙酸锌为锌源,硫脲(NH2)2CS为硫源,使用水热法通过改变反应时间,成功制备了不同粒径的ZnS球状颗粒。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X-射线能谱,高分辨透射电子显微镜(HRTEM))、紫外可见分光光谱和光致发光谱(PL)等测试手段对样品的晶体结构、形貌、光学性质进行了分析。通过对不同粒径的ZnS纳米颗粒对亚甲基蓝的光催化降解的催化活性进行了评估。实验结果表明:在表面活性剂CTAB的作用下,随着反应时间的增加,生成的ZnS晶核生长成纳米颗粒,然后ZnS纳米颗粒将进一步发生团聚从而形成平均粒径超过500nm的ZnS纳米球,但制备的ZnS产物的晶体结构均为立方纤锌矿结构。随着ZnS粒径的增加,样品的紫外吸收峰从418nm逐渐蓝移到362nm,而PL发射峰位的峰强随着粒径的增大而增强。光催化结果显示,反应12h制备的ZnS纳米球的光催化性能最佳。  相似文献   

7.
Liu L  Peng Q  Li Y 《Inorganic chemistry》2008,47(8):3182-3187
Nearly monodisperse CdSe quantum dots with blue emission are obtained through an oxidation approach, in which CdSe particles can be etched into smaller ones. During the oxidation process, CdSe with yellow emission (546 nm) can be rapidly oxidized to blue emission (466 nm) due to its incompletely crystallized structure. Further oxidation results in the slow blue-shift of the photoluminescence peak to 433nm. The quantum fluorescence efficiency of CdSe with blue emission is about 10%, and surface-trap emission becomes evident when the PL peak of CdSe reaches the blue-violet region, since the surface atom ratio increases. This oxidation route offers a simple and mild way to get extremely small CdSe quantum dots.  相似文献   

8.
In this work, tri-octyl phosphine/tri-octyl phosphine oxide (TOPO)-capped cadmium selenide (CdSe) quantum dots (QDs) of varied sizes (5–9 nm), prepared by varying the input Cd:Se precursor ratio using chemical route, were dispersed in conducting polymer matrices viz. poly[2-methoxy, 5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and poly(3-hexylthiophene) (P3HT). By using a binary solvent mixture (pyridine–chloroform), homogeneous dispersion of CdSe nanocrystals in polymers (MEH-PPV, P3HT) could be realized. The properties of the resulting dispersions could be tailored by the composition and concentration of QDs in polymer. The emission and structural properties of polymer–CdSe nanocomposites are found to be dependent on the crystallite size and morphology of CdSe nanocrystallites. An effective quenching of photoluminescence emission in the polymer nanocomposite was observed for smaller CdSe quantum dots (size ∼6 nm) as compared to larger CdSe quantum dots (size ∼9 nm), thus ensuring efficient charge transfer process across the polymer–CdSe interface in the former case. The incomplete quenching, particularly for MEH-PPV:CdSe nanocomposites, could be as a result of insufficient coverage of polymers on the surface of CdSe nanocrystallites, mainly due to phase segregation for TOPO-stripped CdSe nanocrystallites. The superior morphology and optical properties of polymer nanocomposite (P3HT:CdSe QDs) could play a pivotal role for the realization of effective charge separation and transport in hybrid solar cells.  相似文献   

9.
在表面活性剂十六烷基三甲基溴化铵(CTAB)的辅助下,以乙酸锌为锌源,硫脲(NH2)2CS为硫源,使用水热法通过改变反应时间,成功制备了不同粒径的ZnS球状颗粒.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能谱,高分辨透射电子显微镜(HRTEM))、紫外可见分光光谱和光致发光谱(PL)等测试手段对样品的晶体结构、形貌、光学性质进行了分析.通过对不同粒径的ZnS纳米颗粒对亚甲基蓝的光催化降解的催化活性进行了评估.实验结果表明:在表面活性剂CTAB的作用下,随着反应时间的增加,生成的ZnS晶核生长成纳米颗粒,然后ZnS纳米颗粒将进一步发生团聚从而形成平均粒径超过500nm的ZnS纳米球,但制备的ZnS产物的晶体结构均为立方纤锌矿结构.随着ZnS粒径的增加,样品的紫外吸收峰从418nm逐渐蓝移到362nm,而PL发射峰位的峰强随着粒径的增大而增强.光催化结果显示,反应12h制备的ZnS纳米球的光催化性能最佳.  相似文献   

10.
水溶性CdSe/CdS量子点的合成及其与牛血清蛋白的共轭作用   总被引:4,自引:0,他引:4  
用巯基乙酸(TGA)作为稳定剂,合成了水溶性的CdSe和核壳结构的CdSe/CdS半导体量子点。吸收光谱和荧光光谱研究表明,核壳结构的CdSe/CdS半导体量子点比单一的CdSe量子点具有更优异的发光特性。用TEM、电子衍射(ED)和XPS分别表征了CdSe和CdSe/CdS纳米微粒的结构、形貌及分散性。红外光谱和核磁共振谱证实了巯基乙酸分子中的硫原子和氧原子与纳米微粒表面的金属离子发生了配位作用。在pH值为7.4的条件下,将合成的CdSe和CdSe/CdS量子点直接与牛血清白蛋白(BSA)相互作用。实验发现,两种量子点均对BSA的荧光产生较强的静态猝灭作用;而BSA对两种量子点的荧光则具有显著的荧光增敏作用,存在BSA时CdSe/CdS量子点的荧光增强是不存在BSA时体系荧光强度的3倍。  相似文献   

11.
The interaction of water-soluble CdSe quantum dots (QDs) with gold (Au) nanoparticles was investigated by ultraviolet visible absorption spectroscopy. The results showed that the aggregation of Au nanoparticles was induced by CdSe QDs. The influences of factors such as the size of Au nanoparticles, acidity, buffer concentration and the concentration ratio of the CdSe QDs to Au nanoparticles were each investigated. The comparison of two different particle sizes (16 and 25 nm) of Au nanoparticles that interact with CdSe QDs in the solution showed that the aggregation of small Au nanoparticles (16 nm) is easier than that of big Au nanoparticles (25 nm). At pH 7.0 phosphate buffer solution (0.02 M), the optimal molar ratio of CdSe:Au is about 3100:1 according to calculations.  相似文献   

12.
高质量CdSe量子点的水相制备与表征   总被引:3,自引:0,他引:3  
以巯基丁二酸为稳定剂, 亚硒酸钠为硒源, 制备了高质量水溶性CdSe量子点. 研究了反应时间、 镉与硒的摩尔比及镉与巯基丁二酸的摩尔比等实验条件对CdSe量子点光谱性能的影响. 分别用紫外-可见光谱、 荧光光谱、 X射线粉末衍射和透射电子显微镜等对量子点进行表征. 结果表明, 采用这种方法制得的CdSe量子点为立方晶型, 量子点的荧光发射峰在518~562 nm范围内连续可调, 并且发射峰的半峰宽始终保持在35 nm左右, 荧光量子产率可达21%.  相似文献   

13.
ZnS hollow microspheres were synthesized by a dl ‐aspartic acid mediated hydrothermal route. dl ‐aspartic acid plays an important role as crystal growth soft template, which regulates the release of Zn2+ ions for the formation of ZnS hollow spheres. The formation of these hollow spheres was mainly attributed to an Ostwald ripening process. The products were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), electron diffraction (ED), UV/Vis spectroscopy (UV), and photoluminescence (PL). The shells of the microspheres were composed of ZnS quantum dots (QDs) with the average size of 2.31 nm. The average microspheres diameter is 0.5–3.5 μm. The shell thickness of the hollow sphere is ≈?300 nm. The optical bandgap energy increased significantly compared to the bulk ZnS material due to the strong quantum confinement effect. Two strong emissions at ≈?425 nm and ≈?472 nm in the photoluminescence (PL) spectrum of ZnS hollow microspheres indicate strong quantum confinement because of the presence of QDs.  相似文献   

14.
Energy migration in self-assembled, water soluble, quantum dot (QD) nanoclusters is reported. These spherical nanoclusters are composed of CdSe QDs bound together by pepsin, a digestive enzyme found in mammals. A structural model for the clusters is suggested, based on scanning transmission electron microscopy, as well as dynamic light scattering and small angle X-ray scattering. Cluster sizes range from 100 to 400 nm in diameter and show a close-packed interior structure. Optical characterization of the absorption and emission spectra of the clusters is reported, finding photoluminescence quantum yields of up to approximately 60% in water for clusters made from core-shell CdSe-ZnS QDs. Clusters prepared from two different size populations of CdSe QD samples (3 and 4 nm in diameter) demonstrate energy migration and trapping. Resonance energy transfer (RET), from small to large dots within the QD-pepsin cluster, is observed by monitoring the quenching of the small donor dot fluorescence along with enhancement of the large acceptor dot fluorescence.  相似文献   

15.
This paper describes the synthesis of core-shell CdSe/CdS quantum dots (QDs) in aqueous solution by a simple photoassisted method. CdSe was prepared from cadmium nitrate and 1,1-dimethylselenourea precursors under illumination for up to 3 h using a pulsed Nd:YAG laser at 532 nm. The effects that the temperature and the laser irradiation process have on the synthesis of CdSe were monitored by a series of experiments using the precursors at a Cd:Se concentration ratio of 4. Upon increasing the temperature (80-140 degrees C), the size of the CdSe QDs increases and the time required for reaching a maximum photoluminescence (PL) is shortened. Although the as-prepared CdSe QDs possess greater quantum yields (up to 0.072%) compared to those obtained by microwave heating (0.016%), they still fluoresce only weakly. After passivation of CdSe (prepared at 80 degrees C) by CdS using thioacetamide as the S source (Se:S concentration ratio of 1) at 80 degrees C for 24 h, the quantum yield of the core-shell CdSe/CdS QDs at 603 nm is 2.4%. Under UV irradiation of CdSe/CdS for 24 h using a 100-W Hg-Xe lamp, the maximum quantum yield of the stable QDs is 60% at 589 nm. A small bandwidth (W1/2 < 35 nm) indicates the narrow size distribution of the as-prepared core-shell CdSe/CdS QDs. This simple photoassisted method also allows the preparation of differently sized (3.7-6.3-nm diameters) core-shell CdSe/CdS QDs that emit in a wide range (from green to red) when excited at 480 nm.  相似文献   

16.
In this work, the role of conducting [poly (p-phenylinevinylene) (PPV)] and nonconducting (polystyrene) polymers on the properties of their respective composites with CdSe quantum dots of varied sizes has been investigated. The emission and structural properties of polymer–CdSe composites are found to be dependent on the crystallite size and morphology of CdSe nanocrystallites. Smaller CdSe quantum dots (size, ∼5 nm) ensures efficient charge transfer process across polymer–CdSe interface as evident by almost complete quenching of photoluminescence (PL) emission as compared to larger CdSe quantum dots (size, ∼7 nm). Presence of residual trioctylphosphine (TOP)/ tri-n-octylphosphine-oxide (TOPO) species and agglomeration of particles act as a hindrance for quenching of emission and hence charge transfer for larger CdSe nanocrystallites. Emission studies indicated an increased conjugation length for PPV polymers in different solvents (toluene, pyridine) and in solid state. Nonconducting polymer polystyrene shows charge transfer across polymer–CdSe interface as well. However, polystyrene polymer has a shorter chain length, which ensures maximum coverage on the surface of CdSe nanocrystallites and provides better photostability to CdSe QDs within the polymer matrix as compared to that for PPV–CdSe nanocomposites.  相似文献   

17.
Type-II band engineered quantum dots (CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures) are described. The optical properties of these type-II quantum dots are studied in parallel with their type-I counterparts. We demonstrate that the spatial distribution of carriers can be controlled within the type-II quantum dots, which makes their properties strongly governed by the band offset of the comprising materials. This allows access to optical transition energies that are not restricted to band gap energies. The type-II quantum dots reported here can emit at lower energies than the band gaps of comprising materials. The type-II emission can be tailored by the shell thickness as well as the core size. The enhanced control over carrier distribution afforded by these type-II materials may prove useful for many applications, such as photovoltaics and photoconduction devices.  相似文献   

18.
Fe doped CdS quantum dots have been prepared using simple precursors by chemical precipitation technique. Fe doped CdS quantum dots have been synthesized by mixing cadmium nitrate, sodium sulfide and adding Fe under suitable conditions. X-ray diffraction analysis reveals that undoped and Fe doped CdS crystallizes in hexagonal structure. The lattice constants of Fe doped CdS nanoparticles decreased slightly with incorporation of Fe and no secondary phase was observed. The average grain size of the nanoparticles is found to lie in the range of 2.8–4.2 nm. HRTEM results show that undoped and 3.75% Fe doped CdS nanoparticles exhibit a uniform size distribution and average size of the nanoparticles is about 2–3 nm. Raman spectra show that 1LO and 2LO peaks of the Fe doped CdS samples are slightly red shifted compared with those of undoped CdS. Optical absorption spectra of Fe doped CdS nanoparticles exhibited red shift.  相似文献   

19.
Semiconductor nanocrystal quantum dots have been the subject of extensive investigations in different areas of science and technology in the past years. In particular, there are few studies of magic-sized quantum dots (MSQDs), even though they exhibit features such as extremely small size, fluorescence quantum efficiency, molar absorptivity greater than traditional QDs, and highly stable luminescence in HeLa cell cultures, thereby enabling monitoring of biological or chemical processes. The present study investigated the electrochemical behavior of free CdSe/CdS MSQDs using glassy carbon electrode and CdSe/CdS MSQDs immobilized on a gold electrode modified with a self-assembled cyclodextrin monolayer. The MSQDs showed two peaks in aprotic medium. The functionalized film modifier was prepared and characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy using ferricyanide ions as a redox probe. The prepared modified electrode exhibited a stable behavior. The proposed method was successfully applied to encapsulation studies of mangiferin, a natural antioxidant compound, and cyclodextrin associated with the quantum dot, and the response was compared with that of the modified electrode without QD. The fluorescence study revealed that CdSe/CdS quantum dots emit blue light when excited by an optical source of wavelength of 350 nm and a significant increase in fluorescence and absorbance intensity is observed from the core-shell CdSe/CdS MSQDs when quantities of mangiferin are added to the solution containing thiolated cyclodextrin. CdSe/CdS MSQDs are optically and electrochemically sensitive and can be used for the detection and interaction of compounds encapsulated in cyclodextrin.  相似文献   

20.
This work reports a new experimental methodology for the synthesis of ultra small zinc sulfide and iron doped zinc sulfide quantum dots in aqueous media. The nanoparticles were obtained using a simple procedure based on the precipitation of ZnS in aqueous solution in the presence of 2-mercaptoethanol as a capping agent, at room temperature. The effect of Fe(3+) ion concentration as dopant on the optical properties of ZnS was studied. The size of quantum dots was determined to be about 1nm, using scanning tunneling microscopy. The synthesized nanoparticles were characterized by X-ray diffraction, UV-Vis absorption and photoluminescence emission spectroscopies. The presence and amount of iron impurity in the structure of Zn((1-x))Fe(x)S nanocrystals were confirmed by atomic absorption spectrometry. A blue shift in band-gap of ZnS was observed upon increasing incorporation of Fe(3+) ion in the iron doped zinc sulfide quantum dots. The photoluminescence investigations showed that, in the case of iron doped ZnS nanoparticles, the emission band of pure ZnS nanoparticles at 427nm shifts to 442nm with appearance of a new sharp emission band around 532nm. The X-ray diffraction analysis indicated that the iron doped nanoparticles are crystalline, with cubic zinc blend structure, having particle diameters of 1.7±022nm. Finally, the interaction of the synthesized nanoparticles with bovine serum albumin was investigated at pH 7.2. The UV-Vis absorption and fluorescence spectroscopic methods were applied to compare the optical properties of pure and iron doped ZnS quantum dots upon interaction with BSA. It was proved that, in both cases, the fluorescence quenching of BSA by the quantum dots is mainly a result of the formation of QDs-BSA complex in solution. In the steady-state fluorescence studies, the interaction parameters including binding constants (K(a)), number of binding sites (n), quenching constants ( [Formula: see text] ), and bimolecular quenching rate constants (k(q)) were determined at three different temperatures and the results were then used to evaluate the corresponding thermodynamic parameters ΔH, ΔS and ΔG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号