首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aurivillius SrBi2(Nb0.5Ta0.5)2O9 (SBNT 50/50) ceramics were prepared using the conventional solid-state reaction method. Scanning electron microscopy was applied to investigate the grain structure. The XRD studies revealed an orthorhombic structure in the SBNT 50/50 with lattice parameters a=5.522 Å, b=5.511 Å and c=25.114 Å. The dielectric properties were determined by impedance spectroscopy measurements. A strong low frequency dielectric dispersion was found to exist in this material. Its occurrence was ascribed to the presence of ionized space charge carriers such as oxygen vacancies. The dielectric relaxation was defined on the basis of an equivalent circuit. The temperature dependence of various electrical properties was determined and discussed. The thermal activation energy for the grain electric conductivity was lower in the high temperature region (T>303.6 °C, Ea−ht=0.47 eV) and higher in the low temperature region (T<303.6 °C, Ea−lt=1.18 eV).  相似文献   

2.
The chemical preparation, the calorimetric studies and the crystal structure are given for two new organic sulfates NH3(CH2)5NH3SO4 1.5H2O (DAP-S) and NH3(CH2)9NH3SO4·H2O (DAN-S). DAP-S is monoclinic P21/n with unit cell dimensions: a=11.9330(2) Å; b=10.9290(2) Å; c=17.5260(2) Å; β=101.873(1)°; V=2236.77(6) Å3; and Z=8. Its atomic arrangement is described as inorganic layers of units and water molecules separated by organic chains. DAN-S is monoclinic P21/c with unit cell parameters: a=5.768(2) Å; b=25.890(10) Å; c=11.177(5) Å; β=115.70(4)°; V=1504.0(11) Å3 and Z=4. Its structure exhibits infinite chains, parallel to the [100] direction where the organic cations are interconnected. In both structures a network of strong and weak hydrogen bonds connects the different components in the building of the crystal.  相似文献   

3.
Urea-succinic acid crystals have been grown at room temperature from aqueous solution in the presence of maleic acid by a slow evaporation technique. The structural parameters were determined using powder X-ray diffraction (XRD) and found to have monoclinic symmetry (space group P21/m) with a=9.902, b=17.510, c=5.555 Å and α=γ=90°, β=96.46°. The transparency and optical analysis were carried out using UV-vis analysis. The optical band gap is found to be 4.71 eV. The presence of various functional groups was confirmed by FTIR analysis. The samples have shown piezoelectric behavior with a fairly good piezoelectric charge coefficient (d33) of 5 pC/N, when it is poled at 7 kV/cm. The hysteresis loop was plotted and the remnant polarization and coercive field were found to be 2.8 μC/cm2 and 4 kV/cm, respectively. The dielectric analysis was carried out as a function of temperature at various frequencies and the results were also discussed.  相似文献   

4.
A novel layered hydrotalcite-like material, Co7(H2O)2(OH)12(C2H4S2O6), has been prepared hydrothermally and the structure determined using single crystal X-ray diffraction (a=6.2752(19) Å, b=8.361(3) Å, c=9.642(3) Å, α=96.613(5)°, β=98.230(5)°, γ=100.673(5)°, R1=0.0551). The structure consists of brucite-like sheets where 1/6 of the octahedral sites are replaced by two tetrahedrally coordinated Co(II) above and below the plane of the layer. Ethanedisulfonate anions occupy the space between layers and provide charge balance for the positively charged layers. The compound is ferrimagnetic, with a Curie temperature of 33 K, Curie-Weiss θ of −31 K, and a coercive field of 881 Oe at 5 K.  相似文献   

5.
The structure of the ordered double perovskite Ba2CuUO6 has been investigated between room temperature and 800 °C using synchrotron X-ray powder diffraction. At room temperature Ba2CuUO6 is tetragonal, space group I4/m, a=8.82331(13) c=8.82330(13) Å, the structure being characterized by a large Jahn-Teller distortion of the CuO6 octahedra and small out-of-phase tilts of the BO6 octahedra. This Jahn-Teller distortion is also evident in the UV-Vis spectra. Analysis of the spontaneous tetragonal strain reveals a continuous ferroelastic phase transition near 420 °C. This appears to be related to the loss of the tilts whilst maintaining the Jahn-Teller distortion, so that the high temperature structure is in space group I4/mmm.  相似文献   

6.
High-pressure phase transition of Ta2NiO6 with the trirutile-type structure was investigated from the viewpoint of crystal chemistry. A new quenchable high-pressure phase was found in the pressure range higher than 7 GPa and 900°C. The high-pressure phase has an orthorhombic cell (a=4.797(1) Å, b=5.153(2) Å and c=14.85(1) Å and space group; Abm2), and it is more dense by 9.6% than the trirutile-structured phase. Infrared spectra of the trirutile-type phase and the high-pressure phase show that Ni2+ ions in the high-pressure phase are still in octahedral sites. The crystal structure of the high-pressure phase is considered as a cation-ordering trifluorite-type structure, which can be stabilized by a crystal field effect of Ni2+ ions.  相似文献   

7.
Chromium(II) sulfide, Y2CrS4, prepared by a solid-state reaction of Y2S3 and CrS, showed an antiferromagnetic transition at 65 K. The neutron diffraction patterns at 10 and 90 K were both well refined with the space group Pca21. At 90 K, cell parameters were a=12.5518(13) Å, b=7.5245(8) Å, and c=12.4918(13) Å. At 10 K, magnetic peaks were observed, which could be indexed on the same unit cell. Magnetic moments of chromium ions were parallel to the b-axis and antiferromagnetically ordered in each set of the 4a sites.  相似文献   

8.
We have used synchrotron X-ray diffraction to investigate the structural and chemical changes undergone by polycrystalline KH2PO4 (KDP) upon heating within the 30-250 °C temperature interval. Our data show evidence of a polymorphic transition at T∼190 °C from the room-temperature tetragonal KDP phase to a new intermediate-temperature monoclinic KDP modification (spacegroup P21/m and lattice parameters a=7.590, b=6.209, c=4.530 Å, and β=107.36°). The monoclinic RDP polymorph remains stable upon further heating to 235 °C, and is isomorphic to its RbH2PO4 and CsH2PO4 counterparts.  相似文献   

9.
In a temperature dependent neutron powder diffraction (NPD) study we observed the high temperature cubic phase at 973 K in the polycrystalline double perovskite Sr2MnWO6. Rietveld analysis of the NPD data shows that the room temperature tetragonal phase exists up to 573 K (space group P42/n, a=8.0119 (4) Å, c=8.0141(8) Å). At 773 K, the primitive tetragonal symmetry change to body-centred tetragonal (space group I4/m, a=5.6935(5) Å, c=8.077(1) Å) and finally at 973 K it becomes face-centred cubic (space group Fm-3m, a=8.0864(8) Å). The changes in the structural symmetry are connected to the small distortion of the B-site octahedra, which are insensitive to the Differential Thermal Analysis (DTA) signal.  相似文献   

10.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

11.
The crystal structure of the new quaternary compound CuTa2InTe4 was studied using X-ray powder diffraction data. The powder pattern refined by the Rietveld method indicates that this material crystallizes in the tetragonal system with space group I-4¯2m (No. 121), Z=2, and unit cell parameters a=6.1963(2) Å, c=12.4164(4) Å, c/a=2.00 and V=476.72(3) Å3. The structural and instrumental refinement of 28 parameters led to Rp=10.4%, Rwp=11.1%, Rexp=6.8% and χ2=2.7 for 96 independent reflections.  相似文献   

12.
Nanocrystalline gallium phosphide (GaP) has been prepared through a reduction-phosphidation by using Ga, PCl3 as gallium and phosphorus sources and metallic sodium as reductant at 350 °C. The XRD pattern can be indexed as cublic GaP with the lattice constant of a=5.446 Å. The TEM image shows particle-like polycrystals and flake-like single crystals. The PL spectrum exhibits one peak at 330 nm for the as-prepared nanocrystalline GaP.  相似文献   

13.
AlN nanocrystals were prepared in organic solvent at atmospheric pressure and low temperature by the Schlenk technique. Both hexagonal and cubic AlN nanocrystals were obtained. The hexagonal nano-AlN powder possessed a wurtzite structure with a=3.124 Å, c=5.024 Å, the average grain size was about 2 nm. The lattice constant of the cubic nano-AlN was a=9.171 Å, the average grain size was about 4 nm. The structural and optical properties of the obtained AlN were analyzed. The emission related to deep-level defects was investigated by using temperature-dependent photoluminescence.  相似文献   

14.
A promising non-linear optical (NLO) crystal, aqua maleatocopper(II) (CuC4H2O4·H2O), was grown at room temperature by the controlled ionic diffusion technique. Fourier transform infrared spectrum could identify the various functional groups in the crystal. Structural analysis using single crystal XRD revealed that the compound crystallizes in the monoclinic system with space group P21 and unit cell parameters a = 7.7277(5) Å, b = 5.2967(3) Å, c = 7.7179(4) Å, α = γ = 109.170(5)°, β = 111.995(2)°. The thermal stability and decomposition pattern of the material were explored using thermogravimetry (TG) and differential thermal analysis (DTA). The optical band gap energy of the material was estimated as 2.2 eV from the diffuse reflectance spectroscopy. The Kurtz and Perry powder technique established the crystal to be an efficient non-linear optical (NLO) material.  相似文献   

15.
Polymorphic transition of pyridinium tetrachloropalladate(II) was investigated by heat capacity measurements and by single crystal X-ray structural analysis. A large λ-type anomaly was detected at 240 K in the temperature dependence of the heat capacity. The low-temperature phase (LTP) belongs to the triclinic space group with a=6.856(1), b=7.293(1), c=7.721(1) Å, α=75.180(2)°, β=71.081(2)°, γ=81.109(3)° at 100 K, and the high-temperature phase (HTP) to the same space group with a=7.217(2), b=7.470(2), c=7.880(2) Å, α=73.438(3)°, β=65.195(3)°, γ=82.727(4)° at 293 K. The pyridinium cations are ordered antiferroelectrically in LTP. In HTP, however, an orientational disorder of the cation was observed. The energy difference between potential wells for the reorientation of pyridinium ion in HTP is discussed referring to the results of the present single crystal X-ray and heat capacity as well as the previous 1H NMR measurements. A five-site disorder model is shown to be consistent with both of the observations of 1H NMR and X-ray study.  相似文献   

16.
The compound (Me4P)2ZnBr4, a member of the β-K2SO4 structure class, undergoes a phase transition at 84°C from the room temperature space group P121/c1 to the parent Pmcn structure. The room temperature structure corresponds to a ferrodistortive transition of B1g symmetry at the zone center. At room temperature, the compound has lattice constants a=9.501(1), b=16.055(2), c=13.127(2) Å and β=90.43(1)°. For the high temperature phase, the orthorhombic cell has dimensions a=9.466(2), b=16.351(3) and c=13.284(2) Å. The structures consist of two crystallographically independent Me4P+ cations and the ZnBr42− anions. In the room temperature phase, all three ionic species show substantial displacement from the mirror plane perpendicular to the a-axis that exists in the high temperature phase, as well as rotations out of that plane. The thermal parameters of the cations are indicative of substantial librational motion. Measurements of lattice parameters have been made at 2-5°C intervals over the temperature range 40-140°C. The changes in the lattice constants appear continuous at Tc (within experimental limits) indicating that the phase transition is likely second-order. The a lattice constant shows an anomalous shortening as Tc is approached. Thermal expansion coefficients are calculated from this data. An application of Landau theory is used to derive the temperature dependencies of spontaneous shear strain and corresponding elastic stiffness constants associated with the primary order parameter.  相似文献   

17.
A new molecular solid, [1-(4′-bromo-2′-fluorobenzyl)-4-dimetylaminopyridinium]-bis(maleonitriledithiolato)nickel(III), (BrFBzPyN(CH3)2(Ni(mnt)2)(1), has been prepared and characterized by elemental analyses, IR, ESI-MS spectra, single crystal X-ray diffraction and magnetic measurements. Compound 1 crystallizes in the orthorhombic space group Pnma, a=20.579(4) Å, b=7.078(1) Å, c=17.942(4) Å, α=β=γ=90°, V=2613.3(9) Å3, Z=4. The Ni(III) ions of 1 form a quasi-one-dimensional Zigzag magnetic chain within a Ni(mnt)2 column through Ni?S, S?S, Ni?Ni, or π?π interactions with an Ni?Ni distance of 4.227 Å. Magnetic susceptibility measurements in the temperature range 2-300 K show that 1 exhibits a spin-gap transition around 200 K, and antiferromagnetic interaction in the high-temperature phase (HT) and spin gap in the low-temperature phase (LT). The transition for 1 is second-order phase transition as determined by DSC analyses.  相似文献   

18.
Neutron powder diffraction studies showed that the ordered perovskites Ba2BiSbO6 (BBS) and BaSrBiSbO6 (BSBS) crystallize in a rhombohedral structure with the space group R3¯. The room-temperature lattice parameters are a=6.0351(2) Å; α=60.202(1)° and a=5.9809(2) Å; α=60.045(2)°, respectively. BBS exhibits a dielectric anomaly near room temperature which may be related to structural transition from the R3¯ to low-temperature monoclinic I2/m symmetry. BSBS shows a dielectric anomaly near 723 K which coincides with a phase transition from the rhombohedral to cubic (Fm3¯m) structure. In contrast to BBS, BSBS does not undergo structural transition below room temperature.  相似文献   

19.
 The crystal structure of a layered ternary carbide, Ti3(Si0.43Ge0.57)C2, was studied with single-crystal X-ray diffraction. The compound has a hexagonal symmetry with space group P63/mmc and unit-cell parameters a=3.0823(1) Å, c=17.7702(6) Å, and V=146.21(1) Å3. The Si and Ge atoms in the structure occupy the same crystallographic site surrounded by six Ti atoms at an average distance of 2.7219 Å, and the C atoms are octahedrally coordinated by two types of symmetrically distinct Ti atoms, with an average C-Ti distance of 2.1429 Å. The atomic displacement parameters for C and Ti are relatively isotropic, whereas those for A (=0.43Si+0.57Ge) are appreciably anisotropic, with U11 (=U22) being about three times greater than U33. Compared to Ti3SiC2, the substitution of Ge for Si results in an increase in both A-Ti and C-Ti bond distances. An electron density analysis based on the refined structure shows that each A atom is bonded to 6Ti atoms as well as to its 6 nearest neighbor A site atoms, whether the site is occupied by Si or Ge, suggesting that these bond paths may be significantly involved with electron transport properties.  相似文献   

20.
The title double perovskite has been synthesized by solid-state reaction in air. The crystal structure has been studied from powder X-ray diffraction data. Rietveld fits to the pattern show that this compound has a monoclinic symmetry [a=5.4932(3) Å, b=5.4081(3) Å, c=7.6901(5) Å, β=90.0022(1)°, at 300 K] defined in the space group P21/n, where the Cr and Sb cations are almost completely ordered in the B-sublattice of the perovskite structure. Magnetic susceptibility and magnetization measurements show that this compound behaves as a Curie-Weiss paramagnet at high temperatures with μeff=3.53(1) μB and θP=8 K, and exhibits a robust ferromagnetic component below the ordering temperature of TC=13 K, with a saturation magnetization of 2.36 μB/f.u. at 5 K. To our knowledge, this is the first example of a ferromagnetic double perovskite containing a non-magnetic element, such as Sb, occupying one half of the B positions of the perovskite structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号