首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistivity, ρ, of a II-V group semiconductor n-CdSb doped with In is investigated in pulsed magnetic fields up to and at temperatures . The low-temperature resistivity ρ(T) increasing with T in the range of B<4 T is found to have an upturn around B∼4 T and strong activated behavior at further increase of B. These observations give evidence for magnetic-field-induced metal-insulator transition (MIT). In the insulating side of the MIT, Mott variable-range hopping (VRH) conductivity with two types of asymptotic behavior, ln ρ (T, B)∼T−3/4B2 and ln ρ (T, B)∼(B/T)1/3, is established in low and high magnetic fields, respectively. The VRH conductivity is analyzed using a model of the near-edge electron energy spectrum established by investigations of the Hall effect. The VRH conductivity is shown to take place over the band tail states of one out of two impurity bands, which for T=0 and B=0 lie above the conduction band edge.  相似文献   

2.
Effects of the replacement of La with Ce on the electronic and magnetic properties of a layered superconductor LaFePO (Tc=∼5 K) were studied. Polycrystalline samples of CeFePO, prepared by a solid-state reaction, showed metallic conduction down to 2 K without exhibiting superconducting transition, although the resistivity decreased largely at temperatures below 30 K. Further, they showed an apparent positive magnetoresistance (MR) below ∼2 K, superposed on a negative MR. Temperature dependence of magnetic susceptibility is decomposed to a temperature-sensitive Curie-Weiss component presumably due to the Ce3+ ions with a magnetic moment of 1.98μB and a less temperature-sensitive component attributable to itinerant electrons. The magnetic interaction between Ce3+ ions and itinerant electrons in CeFePO likely suppresses the superconducting transition observed in LaFePO.  相似文献   

3.
Magnetic properties of the group II–V semiconductor CdSb single crystals doped with Ni (2 at%) are investigated. Deviation of the zero-field-cooled susceptibility, χZFC, from the field-cooled susceptibility is observed below 300 K, along with a broad maximum of χZFC (T) at Tb in fields below the anisotropy field BK∼4 kG. Tb(B) obeys the law [Tb(B)/Tb(0)]1/2=1–B/BK with Tb(0)∼100 K. The magnetization exhibits saturation above ∼20–30 kG, a weak temperature dependence and anisotropy of the saturation value Ms. The coercive field is much smaller then BK and displays anisotropy inverted with respect to that of Ms. Such magnetic behavior is expected for spheroidal Ni-rich Ni1−xSbx nanoparticles with high aspect ratio, broad distribution of the sizes and with orientations of the major axis distributed around a preferred direction.  相似文献   

4.
We have investigated the magnetic and transport properties of borocarbide superconductors YNi2B2C and YPd5B3C0.4 with Yttrium partially substituted by Samarium. The upper critical fields HC2 are determined by the scaling analysis of the thermal fluctuation magnetoconductivity. Around the transition region, the thermal fluctuation magnetoconductivity can be scaled by a universal function for all applied magnetic fields. The formula HC2(T)=HC2(0)[1−(T/TC)3/2]3/2 of a narrow-band pairing mechanism gives an excellent fit to the value of upper critical field HC2(0)=7.6 T in the Y0.8Sm0.2Pd5B3C0.4 compound. The superconducting coherence length ξ is determined to be 6.58 nm, the Ginzburg-Landau parameter κ is 29 and the penetration depth λ is 191 nm.  相似文献   

5.
The solid solution (Ce1−xLax)PtGa has been studied through X-ray diffraction, magnetization (σ(B)), magnetic susceptibility (χ(T)), electrical resistivity (ρ(T)), magnetoresistivity (MR) and heat capacity (CP(T)) measurements. The Néel temperature (TN=3.3 K) for CePtGa is lowered upon La substitution as observed from χ(T) and ρ(T) measurements. The Kondo temperature TK as calculated from MR measurements is comparable to TN and also decreases with La substitution. The volume dependence of TK is in accordance with the compressible Kondo lattice model and a Doniach diagram of the results is presented. CP(T) measurements are presented for CePtGa, Ce0.2La0.8PtGa and LaPtGa and the results are discussed in terms of the electronic and magnetic properties. Other features of interest are anomalies in ρ(T) and CP(T) due to crystalline electric field effects and metamagnetism as observed in σ(B) studies for samples with 0≤x≤ 0.3.  相似文献   

6.
The magneto-transport properties of ferromagnetic Ga1−xMnxAs epilayers with Mn mole fractions in the range of x≈2.2-4.4% were investigated through Hall effect measurements. The magnetic field-dependent Hall mobility for a metallic sample with x≈2.2% in the temperature range of T=0-300 K was analyzed by magnetic field-dependent mobility model including an activation energy of Mn acceptor level. This model provides outstanding fits to the measured data up to T=300 K. It was found that the acceptor levels with activation energies of 112 meV at B=0 Oe decreased to 99 meV at B=5 kOe in the ferromagnetic region. The decrease in acceptor activation energy was due to the spin splitting of the Mn acceptor level in the ferromagnetic region, and was responsible for increase in carrier concentration.  相似文献   

7.
Magnetization and susceptibility were investigated as a function of temperature and magnetic field in polycrystalline Mn[Cr0.5Ga1.5]S4 spinel. The dc susceptibility measurements at 919 Oe showed a disordered ferrimagnetic behaviour with a Curie-Weiss temperature θCW=−55 K and an effective magnetic moment of 5.96 μB close to the spin-only value of 6.52 μB for Cr3+ and Mn2+ ions in the 3d3 and 3d5 configurations, respectively. The magnetization measured at 100 Oe revealed the multiple magnetic transitions with a sharp maximum at the Néel temperature TN=3.9 K, a minimum at the Yafet-Kittel temperature TYK=5 K, a broad maximum at the freezing temperature Tf=7.9 K, and an inflection point at the Curie temperature TC=48 K indicating a transition to paramagnetic phase. A large splitting between the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations at a temperature smaller than TC suggests the presence of spin-glass-like behaviour. This behaviour is considered in a framework of competing interactions between the antiferromagnetic ordering of the A(Mn) sublattice and the ferromagnetic ordering of the B(Cr) sublattice.  相似文献   

8.
We report on the preparation and characterization of the variation of B′-site transition metal in Sr2CrMO6 (M=Mo, W) with double perovskites structure. The magnetic susceptibility shows that Sr2CrMoO6 and Sr2CrWO6 are antiferromagnets with TN=40 and 30 K at H=1 T, respectively. In addition, a large magnetoresistance ratio (MR) of ∼38% (H=3 T) at 5 K was observed in the Sr2CrWO6 compound. However, the Sr2CrMoO6 compound does not show any significant MR even at high fields (MR∼4%; H=3 T and 5 K). The measured O K-edge X-ray absorption is in agreement with the calculated O p-density of states for both compounds.  相似文献   

9.
The magnetization of native horse spleen ferritin protein is measured in pulsed magnetic fields to 55 T at T=1.52 K. The magnetization rises smoothly with negative curvature due to uncompensated Fe3+ spins and with a large high field slope due to the underlying antiferromagnetic ferritin core. Even at highest fields the magnetic moment is only ∼4% of the saturation moment of the full complement of Fe3+ in the ferritin molecule. The AC magnetic susceptibility, χAC(T,f), responding to the uncompensated spins, reaches a maximum near the superparamagnetic blocking temperature with the temperature of the maximum, TM, varying with excitation frequency, TM−1 α log f for 10?f?104 Hz.  相似文献   

10.
The magnetoresistivity and critical current density of well characterized Si-nanoparticle doped and undoped Cu-sheathed MgB2 tapes have been measured at temperatures T≥28 K in magnetic fields B≤0.9 T. The irreversibility line Birr(T) for doped tape shows a stepwise variation with a kink around 0.3 T. Such Birr(T) variation is typical for high-temperature superconductors with columnar defects (a kink occurs near the matching field B?) and is very different from a smooth Birr(T) variation in undoped MgB2 samples. The microstructure studies of nanoparticle doped MgB2 samples show uniformly dispersed nanoprecipitates, which probably act as a correlated disorder. The observed difference between the field variations of the critical current density and pinning force density of the doped and undoped tape supports the above findings.  相似文献   

11.
We study magnetotransport properties of graphite and rhombohedral bismuth samples and found that in both materials applied magnetic field induces the metal-insulator- (MIT) and reentrant insulator-metal-type (IMT) transformations. The corresponding transition boundaries plotted on the magnetic field-temperature (B − T) plane nearly coincide for these semimetals and can be best described by power laws T ∼ (B − Bc)κ, where Bc is a critical field at T = 0 and κ = 0.45 ± 0.05. We show that insulator-metal-insulator (I-M-I) transformations take place in the Landau level quantization regime and illustrate how the IMT in quasi-3D graphite transforms into a cascade of I-M-I transitions, related to the quantum Hall effect in quasi-2D graphite samples. We discuss the possible coupling of superconducting and excitonic correlations with the observed phenomena, as well as signatures of quantum phase transitions associated with the M-I and I-M transformations.  相似文献   

12.
The crystal structure, magnetic and magnetotransport properties of the variation of B′-site transition metal in Sr2FeMO6 (M=Mo, W) with double perovskites structure have been investigated systematically. Measurements of magnetization vs. temperature at H=5 T show that Sr2FeMoO6 is a ferromagnet and Sr2FeWO6 is an antiferromagnet with TN∼35 K. Additionally, the large magnetoresistance ratio (MR) of ∼22% (H=3 T) at room temperature (RT) was observed in the Sr2FeWO6 compound. However, the Sr2FeMoO6 compound did not show any significant MR even at high fields and RT (MR∼1%; H=3 T and 300 K). The implications of these findings are supported by band structure calculations to explain the interaction between the 4d(Mo) and 5d(W) orbitals of transition metal ions and oxygen ions.  相似文献   

13.
In the compound MnBi, a first-order transition from the paramagnetic to the ferromagnetic state can be triggered by an applied magnetic field and the Curie temperature increases nearly linearly with an increase in magnetic field by ∼2 K/T. Under a field of 10 T, TC increases by 20 and 22 K during heating and cooling, respectively. Under certain conditions a reversible magnetic field or temperature induced transition between the paramagnetic and ferromagnetic states can occur. A magnetic and crystallographic H-T phase diagram for MnBi is given. Magnetic properties of MnBi compound aligned in a Bi matrix have been investigated. In the low temperature phase MnBi, a spin-reorientation takes place during which the magnetic moments rotate from being parallel to the c-axis towards the basal plane at ∼90 K. A measuring Dc magnetic field applied parallel to the c-axis of MnBi suppresses partly the spin-reorientation transition. Interestingly, the fabricated magnetic field increases the temperature of spin-reorientation transition Ts and the change in magnetization for MnBi. For the sample solidified under 0.5 T, the change in magnetization is ∼70% and Ts is ∼91 K.  相似文献   

14.
Antiferromagnetic phase transition in two vanadium garnets AgCa2Co2V3O12 and AgCa2Ni2V3O12 has been found and investigated extensively. The heat capacity exhibits sharp peak due to the antiferromagnetic order with the Néel temperature TN=6.39 K for AgCa2Co2V3O12 and 7.21 K for AgCa2Ni2V3O12, respectively. The magnetic susceptibilities exhibit broad maximum, and these TN correspond to the inflection points of the magnetic susceptibility χ a little lower than T(χmax). The magnetic entropy changes from zero to 20 K per mol Co2+ and Ni2+ ions are 5.31 J K−1 mol-Co2+-ion−1 and 6.85 J K−1 mol-Ni2+-ion−1, indicating S=1/2 for Co2+ ion and S=1 for Ni2+ ion. The magnetic susceptibility of AgCa2Ni2V3O12 shows the Curie-Weiss behavior between 20 and 350 K with the effective magnetic moment μeff=3.23 μB Ni2+-ion−1 and the Weiss constant θ=−16.4 K (antiferromagnetic sign). Nevertheless, the simple Curie-Weiss law cannot be applicable for AgCa2Co2V3O12. The complex temperature dependence of magnetic susceptibility has been interpreted within the framework of Tanabe-Sugano energy diagram, which is analyzed on the basis of crystalline electric field. The ground state is the spin doublet state 2E(t26e) and the first excited state is spin quartet state 4T1(t25e2) which locates extremely close to the ground state. The low spin state S=1/2 for Co2+ ion is verified experimentally at least below 20 K which is in agreement with the result of the heat capacity.  相似文献   

15.
The Hall coefficient RH of n-type CuInSe2 single crystals is measured between 10 and 300 K in pulsed magnetic field up to 35 T. The threshold field Bth, above which the magnetic freezeout starts to occur, varies linearly with temperature. From the analysis of the temperature dependence of electron concentration in the activation regime above 100 K at different field values, it is established that the density of states effective mass is independent of the magnetic field B and the activation energy ED, above around 6 T, varies as B1/3. Similar B1/3 dependence of the magnetoresistance in the high magnetic field regime, reported earlier in the same material, suggests that theoretical work that could explain this coincidence is needed.  相似文献   

16.
Single-crystals of the new ferromagnetic superconductor UCoGe have been grown. The quality of as-grown samples can be significantly improved by a heat-treatment procedure, which increases the residual resistance ratio (RRR) from ∼5 to ∼30. Magnetization M(T) and resistivity ρ(T) measurements show the annealed samples have a sharp ferromagnetic transition with a Curie temperature TC is 2.8 K. The ordered moment of 0.06 μB is directed along the orthorhombic c-axis. Superconductivity is found below a resistive transition temperature Ts=0.65 K.  相似文献   

17.
Magnetic properties of Co nanoparticles of 1.8 nm diameter embedded in Mn and Ag matrices have been studied as a function of the volume fraction (VFF). While the Co nanoparticles in the Ag matrix show superparamagnetic behavior with TB=9.5 K (1.5% VFF) and TB=18.5 K (8.9% VFF), the Co nanoparticles in the antiferromagnetic Mn matrix show a transition peak at ∼65 K in the ZFC/FC susceptibility measurements, and an increase of the coercive fields at low temperature with respect to the Ag matrix. Exchange bias due to the interface exchange coupling between Co particles and the antiferromagnetic Mn matrix has also been studied. The exchange bias field (Heb), observed for all Co/Mn samples below 40 K, decreases with decreasing volume fraction and with increasing temperature and depends on the field of cooling (Hfc). Exchange bias is accompanied by an increase of coercivity.  相似文献   

18.
Magnetic properties of four sigma-phase Fe100−xVx samples with 34.4?x?55.1 were investigated by Mössbauer spectroscopy and magnetic measurements in the temperature interval 4.2-300 K. Four magnetic quantities, viz. hyperfine field, Curie temperature, magnetic moment and susceptibility, were determined. The sample containing 34.4 at% V was revealed to exhibit the largest values found up to now for the sigma-phase for average hyperfine field, 〈B〉=12.1 T, average magnetic moment per Fe atom, 〈μ〉=0.89 μB, and Curie temperature, TC=315.3 K. The quantities were shown to be strongly correlated with each other. In particular, TC is linearly correlated with 〈μ〉 with a slope of 406.5 K/μB, as well as 〈B〉 is so correlated with 〈μ〉, yielding 14.3 T/μB for the hyperfine coupling constant.  相似文献   

19.
The crystal structural, magnetic and electrical transport properties of double perovskite CeKFeMoO6 have been investigated. The crystal structure of the compound is assigned to the monoclinic system with space group P21/n and its lattice parameters are a=0.55345(3) nm, b=0.56068(2) nm, c=0.78390(1) nm, β=89.874(2). The divergence between zero-field-cooling and field-cooling M-T curves demonstrates the anisotropic behavior. The Curie temperature measured from Cp-T curve is about 340 K. Isothermal magnetization curve shows that the saturation and spontaneous magnetization are 1.90 and 1.43 μB/f.u. at 300 K, respectively. The electrical behavior of the sample shows a semiconductor. The electrical transport behavior can be described by variable range hopping model. Large magnetoresistance, −0.88 and −0.18, can be observed under low magnetic field, 0.5 T, at low and room temperature, respectively.  相似文献   

20.
The magnetocaloric properties of melt-spun Gd-B alloys were examined with the aim to explore their potential application as magnetic refrigerants near room temperature. A series of Gd100−xBx (x=0, 5, 10, 15, and 20 at%) alloys were prepared by melt spinning. With the decrease in Gd/B ratio, Curie temperature (TC) remains constant at ∼293 K, and saturation magnetization, at 275 K, decreases from ∼100 to ∼78 emu/g. Negligible magnetic hysteresis was observed in these alloys. The peak value of magnetic entropy change, (−ΔSM)max, decreased from ∼9.9 J/kg K (0-5 T) and ∼5.5 J/kg K (0-2 T) for melt-spun Gd to ∼7.7 J/kg K (0-5 T) and ∼4.0 J/kg K (0-2 T), respectively for melt-spun Gd85B15 and Gd80B20 alloys. Similarly, the refrigeration capacity (q) decreased monotonously from ∼430 J/kg (0-5 T) for melt-spun Gd to ∼330 J/kg (0-5 T) for melt-spun Gd80B20 alloy. The near room temperature magnetocaloric properties of melt-spun Gd100−xBx (0≤x≤20) alloys were found to be comparable to few first-order transition based magnetic refrigerants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号