首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We report on the preparation and characterization of the variation of B′-site transition metal in Sr2CrMO6 (M=Mo, W) with double perovskites structure. The magnetic susceptibility shows that Sr2CrMoO6 and Sr2CrWO6 are antiferromagnets with TN=40 and 30 K at H=1 T, respectively. In addition, a large magnetoresistance ratio (MR) of ∼38% (H=3 T) at 5 K was observed in the Sr2CrWO6 compound. However, the Sr2CrMoO6 compound does not show any significant MR even at high fields (MR∼4%; H=3 T and 5 K). The measured O K-edge X-ray absorption is in agreement with the calculated O p-density of states for both compounds.  相似文献   

2.
The effects of A-site average cation size 〈rA〉 and anti-site defects on Curie temperature (TC) and room-temperature magnetoresistance (MR) in (Sr2−xBax)FeMoO6 (x=0, 0.4 and 1.6) have been investigated. By Ba doping, not only the room-temperature MR but also the TC have been enhanced. The larger MR in the Ba-doped samples compared with the prototype Sr2FeMoO6 is associated with the lower saturation field. The optimization of TC and MR in (Sr1.6Ba0.4)FeMoO6 other than in the reported (Sr0.4Ba1.6)FeMoO6 can be understood according to the two competing effects: anti-site defects and chemical pressure.  相似文献   

3.
Magnetoresistance material Sr2FeMoO6 with double perovskite structure was synthesized by microwave sintering method using SrCO3, Fe2O3 and MoO3 as raw materials, with MnO2 for microwave absorber. The phase structure, magnetic and electrical transport properties were investigated by X-ray powder diffraction (XRD) and vibrating-sample magnetometer. XRD analysis shows that the as-synthesized sample is Sr2FeMoO6 with tetragonal crystal structure and I4/mmm space group. The unit cell parameters are a=0.5587 nm, c=0.7894 nm, volume=0.2464 nm3. The calculated grain size of the sample is 31.62 nm, which is obtained by the Scherrer formula using the diffraction data. Magnetism testing results show that the sample Sr2FeMoO6 is ferromagnetic with the magnetic transition temperature of about 380 K. Under 1.0 T magnetic field, the saturation and spontaneous magnetization of Sr2FeMoO6 is 1.25 μB/f.u. and 1.00 μB/f.u. at room temperature. The magnetoresistance ratio of the sample is 28%. Electrical transport properties testing results indicate that the sample exhibits typical semiconductor behavior. The conductive mechanism of Sr2FeMoO6 is highly dependent on temperature: within the temperature range of 100–300 K, the mechanism is attributed to the small polaron variable-range hopping model; while it is ascribed to the adiabatic small polaron model within the temperature range of 80–100 K.  相似文献   

4.
The structural magnetic and magneto-transport properties of double perovskite system Ba2−xSrxFeMoO6 (0?x?1.0) prepared in bulk polycrystalline form are reported in this paper. X-ray diffraction analysis showed that samples are single phase and the lattice constants decreases with increase in the Sr content. The degree of Fe-Mo ordering has been found decreasing in the series with an increase in the Sr content. Parent compound Ba2FeMoO6 exhibits saturation magnetic moment value of 3.54 μB/f.u. at 85 K in a magnetic field of 6000 Oe. Temperature dependence of resistivity shows metallic behavior for all the samples. The magneto-resistance (MR) of the compound with x=0.4 is higher than that of the other samples. At room temperature this system shows a saturation magnetization value of 1.73 μB/f.u. and MR value of 7.08% (1 T). The observed variations in the structural and magnetic properties are attributed to the change of chemical pressure due to the substitution of Sr in place of Ba. The effect of antisite disorder (ASD) defects on magneto-transport properties is studied in more detail.  相似文献   

5.
The crystal structure of double perovskite Sr2FeMoO6 synthesized via solid-state reaction at 1280 °C under a reduction atmosphere is refined by Rietveld technique based on X-ray powder diffraction (XRD) data in 2θ range of 15-140°. An antisite content (AS), i.e. Fe on the Mo sites (=Mo on the Fe sites), of 12.1(1)% is derived. In reference to the refinement results, a series of X-ray and neutron powder diffraction (NPD) data with different antisite contents, ranging from 0 (completely ordered) to 50% (completely disordered), are generated with a Poisonian noise added and subjected to Rietveld refinements with the same initial values for the refinable parameters. The AS is reproduced satisfactorily from the refinement of XRD data and the combined refinement of XRD and NPD data with a relative deviation smaller than 4%, whereas the relative deviation of AS derived from the refinement of NPD data can be as large as 50%. However, the atomic occupancies and isotropic temperature factors of all the atoms can be reasonably reproduced from the refinement of NPD data and the combined refinement of XRD and NPD data, whereas these data can be reproduced only for cations (Sr, Fe, Mo) from the refinement of XRD data. The present simulation studies shed light on understanding the controversial statements derived from XRD and NPD work regarding the antisite defects in Sr2FeMoO6, which in turn is indispensable for understanding the mechanism of large room temperature low-field magnetoresistance of the compound.  相似文献   

6.
The effect of Ba(La)TiO3 doping on the structure and magnetotransport properties of La2/3Sr1/3MnO3(LSMO)/xBa(La)TiO3 (x=0.0, 1.0, 5.0 mol%) have been investigated. The X-ray diffraction patterns and microstructural analysis show that BaTiO3 and LSMO phases exist independently in BaTiO3-doped composites. The metal-insulator transition temperature (TMI) decreases whereas the maximum resistivity increases very quickly by the increase of BaTiO3 doping level. The partial substitution of Ba by La(0.35 mol%) results in a decrease in resistivity of LSMO/xBa(La)TiO3 composites. Magnetoresistance of BaTiO3-doped composites decreases monotonously in the temperature range 200-400 K in a magnetic field of 5 T, which is completely different from that of LSMO compound. The value of MR decreases at low field (H<1 T) and increases at high fields (H>1 T) with increasing the BaTiO3 doping level at low temperatures below 280 K. These investigations reveal that the magnetotransport properties of LSMO/xBa(La)TiO3 composites are dominated by spin-dependent scattering and tunneling effect at the LSMO/BaTiO3/LSMO magnetic tunnel junction.  相似文献   

7.
The anion-deficient perovskite Y0.8Sr2.2Mn2GaO8−δ (where δ∼0.1) has been synthesised and the crystal and magnetic structures determined by Rietveld analysis of neutron powder diffraction (NPD) data. The material has body-centred tetragonal symmetry (I4/mmm, a=7.6373(3) Å and c=15.6636(10) Å) and consists of alternating layers of octahedral and tetrahedral polyhedra, the layers being perpendicular to [001]. The octahedral layers are preferentially occupied by manganese and the tetrahedral layers are a mixture of manganese and gallium. The precise cation distribution depends critically on preparative conditions. An unusual structural feature of these materials is the arrangement of oxygen vacancies in the tetrahedral layers: in the basic structure, isolated squares of corner-linked tetrahedra are formed instead of the chains that are observed in brownmillerite phases. Additional oxide ions in this layer probably allow the Mn ions to achieve distorted square pyramidal coordination. Low temperature NPD and magnetisation data indicate antiferromagnetic ordering below 100 K.  相似文献   

8.
The magnetic and magnetoresistive properties of spinel-type Zn1−xCoxFe2O4 (x=0, 0.2 and 0.4) ferrites are extensively investigated in this study. A large negative magnetoresistance (MR) effect is observed in Zn1−xCoxFe2O4 ferrites of spinel structure. These materials are either ferrimagnetic or paramagnetic at room temperature, and show a spin-(cluster) glass transition at low temperatures, depending on the chemical compositions. The MR curves as a function of magnetic fields, MR(H), are parabolic at all temperatures for paramagnetic polycrystalline ZnFe2O4. The MR for ZnFe2O4 at 110 K in the presence of 9 T applied magnetic field is 30%. On the other hand, MR(H) are linear for x=0.2 and 0.4 ferrimagnetic Zn1−xCoxFe2O4 samples up to 9 T. The MR effect is independent of the sintering temperatures, and can be explained with the help of the spin-dependent scattering and the Yafet–Kittel angle of Zn1−xCoxFe2O4 mixed ferrites.  相似文献   

9.
The Th4+ for Sr2+ substitution in SrCoO3−δ is found to be an efficient way to stabilize an oxygen deficient perovskite. The structural study reveals a Th4+ solubility limited to ∼10% so that the chemical formula, Sr0.9Th0.1CoO2.79, is obtained. The comparison to the Y3+ for Sr2+ substitution shows that a lower oxygen content is obtained for the former according to the Sr0.75Y0.25CoO2.55 formula. The higher oxygen content reached with Th4+ has a strong impact on the physical properties: Sr0.9Th0.1CoO2.79 is an itinerant ferromagnet (TC∼200 K, ρ5 K=2 mΩ cm) whereas Sr0.75Y0.25CoO2.55 is a robust insulating antiferromagnet (TN∼320 K, ρ5 K=105 Ω cm). Clearly, the substitution of a tetravalent cation for Sr2+ appears to be a promising route to synthesize SrCoO3−δ itinerant ferromagnets without the use of high oxygen pressure nor electrochemical oxidation.  相似文献   

10.
Magnetoresistance (MR) and magnetization (dc and ac) measurements have been carried out on the manganites, (La0.7−2xEux)(Ca0.3Srx)MnO3 (0.05≤x≤0.15), in the temperature range of 5-320 K. At 5 K, an unusually large MR of almost 98% is observed in the x=0.15 sample, nearly up to fields of 4-5 T. This large high-field MR occurs in the metallic region, far below the insulator-metal transition temperature, and does not vary linearly with applied field. The unusual magnetoresistance is explained in the light of various possibilities such as phase segregation, cluster spin-glass behavior, etc.  相似文献   

11.
We have investigated the crystal structure, magnetization and magnetoresistance of the double perovskite compounds Sr2(Fe1−xVx)MoO6 (0≤x≤0.1). The lattice constants and the cation ordering decrease monotonously with the V content. The Curie temperature, saturation magnetization and low field magnetoresistance of the compounds decrease with increasing x due to the reduced degree of ordering. The resistivity of Sr2FeMoO6 and lightly doped samples shows semiconductive behavior, while the samples with higher doping levels exhibit a semiconductor-metal transition around 80 K.  相似文献   

12.
Phase structure and magnetic properties of the as-cast and as-milled/annealed SmCo7−xMox (x=0, 0.1, 0.2, 0.3, 0.4) alloys have been systematically studied. It is found that all the as-cast series alloys are composed of the CaCu5-type and Th2Zn17-type phases. Saturation magnetization of the samples decreases with the Mo content increasing. Intrinsic coercivities (iHc) of no more than 0.06 T are observed in these as-cast samples, due to their rather coarse grain microstructures with an average grain size of 50 μm. The as-milled/annealed SmCo7−xMox powders crystallize in the disordered TbCu7-type (1:7) structure with very fine nanograins, and a minor Co3Mo phase appears in the samples with x=0.1-0.4. High iHc (?0.95 T) are achieved in these samples, with a maximum of 1.26 T located at x=0.2, which can be primarily attributed to strong pinning of the domain wall motion at the nanograin boundaries. The temperature coefficient (β) of the iHc is about −0.22%/°C in the temperature range of 25-400 °C for the as-milled/annealed samples.  相似文献   

13.
Single-phase polycrystalline samples of La0.7Sr0.3Mn1-xCrxO3 with nominal composition of x=0.00, 0.20, 0.40 and 0.50 were prepared by a conventional solid-state reaction method in air. Investigations of magnetization were carried out in the temperature range 5-400 K and magnetic field range 0-8 T. It was found that the Curie temperature TC decreases with increasing x and the maximum magnetic entropy change (−ΔSM) for x=0.20 is ∼1.203 and ∼2.653 J/kg K, respectively for 2 and 6 T magnetic field near the temperature of 280 K.  相似文献   

14.
Lead-free (K0.5Na0.5)0.90Li0.06Sr0.02Nb(1−x)SbxO3 (KNLSN-Sbx) ceramics were synthesized by ordinary sintering technique. The compositional dependence of phase structure and electrical properties of the ceramics was systematically investigated. All samples possessed pure perovskite structure, showing room temperature symmetries of orthorhombic at x<0.01, coexistence of orthorhombic and tetragonal phases at x=0.01, and tetragonal at 0.02≤x≤0.05. The temperature of the polymorphic phase transition (PPT) was shifted to lower temperature and dielectric relaxor behavior was induced by increasing Sb content. The samples near the coexistence region (x=0.01) exhibited enhanced electrical properties: d33∼145 pC/N, kp∼38% and Pr∼20.4 μC/cm2.  相似文献   

15.
The thermal diffusivity has been investigated in double perovskite Sr2MMoO6 (M=Fe, Mn and Co) by means of the mirage effect. We have found that the thermal diffusivity of metallic Sr2FeMoO6 is 0.39 cm2/s, which is larger than that (0.33 cm2/s) of insulating Sr2MnMoO6 and Sr2CoMoO6. We further investigate the substitution effects of the La3+ ions for the Sr2+ ions in Sr2FeMoO6 and Sr2MnMoO6, and have found that the thermal diffusivities of both samples significantly increase with the La concentration. Such an enhancement of the thermal diffusivities has been ascribed to occupation of the extra itinerant electrons on the conduction Mo4d band.  相似文献   

16.
《Solid State Communications》2003,127(11):703-706
In this work we present temperature dependent infrared reflectivity and absorption of Sr2FeWO6 between 700 and 17 K measured from 40 to 10000 cm−1. The reflectivity spectra show well defined phonon bands peaking at 143, 227, 377 and 625 cm−1 assigned to overlapping vibrational modes split from those active in cubic perovskite. We have also verified that this compound is structurally stable in the whole temperature range and that its optical gap at ∼750 cm−1 (95 meV) undergoes only a minor high temperature decrease ascribed to new thermally accessible levels.  相似文献   

17.
A novel layered hydrotalcite-like material, Co7(H2O)2(OH)12(C2H4S2O6), has been prepared hydrothermally and the structure determined using single crystal X-ray diffraction (a=6.2752(19) Å, b=8.361(3) Å, c=9.642(3) Å, α=96.613(5)°, β=98.230(5)°, γ=100.673(5)°, R1=0.0551). The structure consists of brucite-like sheets where 1/6 of the octahedral sites are replaced by two tetrahedrally coordinated Co(II) above and below the plane of the layer. Ethanedisulfonate anions occupy the space between layers and provide charge balance for the positively charged layers. The compound is ferrimagnetic, with a Curie temperature of 33 K, Curie-Weiss θ of −31 K, and a coercive field of 881 Oe at 5 K.  相似文献   

18.
We present results on the Hall coefficient RH in the normal state for a GdBa2Cu3O7−δ/La0.75Sr0.25MnO3 bilayer and a La0.75Sr0.25MnO3 film grown by dc magnetron sputtering on (1 0 0) SrTiO3. We find that the electric transport on the bilayer can be qualitatively described using a simple parallel layers model. The GdBa2Cu3O7−δ layer presents a carrier density approximately equal to that reported for 7 − δ = 6.85 oxygen doping. Also we observe an unexpected presence of two Hall resistivity regimes, effects that may be associated with the internal magnetic field induced on the superconducting layer by the ferromagnetic layer.  相似文献   

19.
We report the temperature dependence of susceptibility for various pressures, magnetic fields and constant magnetic field of 5 T with various pressures on La2−2xSr1+2xMn2O7 single crystal to understand the effectiveness of pressure and magnetic field in altering the magnetic properties. We find that the Curie temperature, Tc, increases under pressure (dTc/dP=10.9 K/GPa) and it indicates the enhancement of ferromagnetic phase under pressure up to 2 GPa. The magnetic field dependence of Tc is about 26 K for 3 T. The combined effect of pressure and constant magnetic field (5 T) shows dTc/dP=11.3 K/GPa and the peak structure is suppressed and broadened. The application of magnetic field of 5 T realizes 3D spin ordered state below Tc at atmospheric pressure. Both peak structure in χc and 3D spin ordered state are suppressed, and changes to 2D-like spin ordered state by increase of pressure. These results reveal that the pressure and the magnetic field are more competitive in altering the magnetic properties of bilayer manganite La1.25Sr1.75Mn2O7 single crystal.  相似文献   

20.
Magnetization and specific heat measurements, as a function of temperature, were performed on single crystals of La1.35Sr1.65Mn2O7 and La1.5Sr0.5NiO4, under different applied magnetic fields (H). The specific heat in La1.35Sr1.65Mn2O7 was decreased for H=9 T parallel to the crystal c axis, compared with H=0, possibly due to a suppression of spin-wave excitations (magnons) in that ferromagnetic bilayer structure. On the other hand, the applied magnetic field had no effect in the specific heat of the antiferromagnetic La1.5Sr0.5NiO4. For H=9 T and below the temperature of 4 K the specific heat data, for each crystal, was well fitted by an exponential decay law. This allowed the calculation of energy gaps around 1 meV for both compounds, in close agreement with Δ=2μBH for an expected energy gap in the magnon spectrum. Detailed magnetization measurements showed monotonic variations below 4 K and a steep increase close to 2 K. Both magnetization and specific heat measurements suggest the existence of an anisotropy gap in the energy spectrum of La1.35Sr1.65Mn2O7 and La1.5Sr0.5NiO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号