首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
We study theoretically the influence of light waves on the thermoelectric power under large magnetic field (TPM) for III‐V, ternary and quaternary materials, whose unperturbed energy‐band structures, are defined by the three‐band model of Kane. The solution of the Boltzmann transport equation on the basis of this newly formulated electron dispersion law will introduce new physical ideas and experimental findings in the presence of external photoexcitation. It has been found by taking n‐InAs, n‐InSb, n‐Hg1‐xCdxTe and n‐In1‐xGaxAsyP1‐y lattice matched to InP as examples that the TPM decreases with increase in electron concentration, and increases with increase in intensity and wavelength, respectively in various manners. The strong dependence of the TPM on both light intensity and wavelength reflects the direct signature of light waves that is in direct contrast as compared with the corresponding bulk specimens of the said materials in the absence of external photoexcitation. The rate of change is totally band‐structure dependent and is significantly influenced by the presence of the different energy‐band constants. The well‐known result for the TPM for nondegenerate wide‐gap materials in the absence of light waves has been obtained as a special case of the present analysis under certain limiting conditions and this compatibility is the indirect test of our generalized formalism. Besides, we have also suggested the experimental methods of determining the Einstein relation for the diffusivity:mobility ratio, the Debye screening length and the electronic contribution to the elastic constants for materials having arbitrary dispersion laws.  相似文献   

2.
Long wavelength optical lattice vibration and dielectric constants of the quaternary mixed crystal Zn1−xyMgyBexSe are investigated based on the pseudo-unit-cell mode and Born-Huang procedure. It is found that this material shows a three-mode behavior and the oscillator strength of each mode is mainly controlled by only one component. The theoretical results also show that the linear interpretation method for dielectric constants is reliable. The vibrational frequencies and the oscillator strengths of the ternary mixed crystals BexZn1−xSe, BexMg1−xSe and MgxZn1−xSe are also calculated as special cases of the quaternary mixed crystal for comparing with experiments. The calculation shows agreement with the experimental results.  相似文献   

3.
We study the photoemission from quantum wire and quantum dot superlattices with graded interfaces of optoelectronic materials on the basis of newly formulated electron dispersion relations in the presence of external photo-excitation. Besides, the influence of a magnetic field on the photoemission from the aforementioned superlattices together with quantum well superlattices in the presence of a quantizing magnetic field has also been studied in this context. It has been observed taking into account HgTe/Hg1−xCdxTe and InxGa1−xAs/InP that the photoemission from these nanostructures increases with increasing photon energy in quantized steps and exhibits oscillatory dependences with the increase in carrier concentration. Besides, the photoemission decreases with increasing light intensity and wavelength, together with the fact that said emission decreases with increasing thickness exhibiting oscillatory spikes. The strong dependences of the photoemission on the light intensity reflects the direct signature of light waves on the carrier energy spectra. The content of this paper finds six applications in the fields of low dimensional systems in general.  相似文献   

4.
Electronic parameters of a two-dimensional electron gas (2DEG) in modulation-doped highly strained InxGa1−xAs/InyAl1−yAs coupled double quantum wells were investigated by performing Shubnikov-de Haas (S-dH), Van der Pauw Hall-effect, and cyclotron resonance measurements. The S-dH measurements and the fast Fourier transformation results for the S-dH at 1.5 K indicated the electron occupation of two subbands in the quantum well. The electron effective masses of the 2DEG were determined from the cyclotron resonance measurements, and satisfied qualitatively the nonparabolicity effects in the quantum wells. The electronic subband structures were calculated by using a self-consistent method.  相似文献   

5.
A theoretical study on the structural, elastic, electronic and lattice dynamic properties of AlxYyB1−xyN quaternary alloys in zinc-blend phase has been carried out with first-principles methods. Information on the lattice parameter, the lattice matching to available substrates and energy band-gaps is a prerequisite for many practical applications. The dependence of the lattice parameter a, bulk modulus B, elastic constants C11, C12 and C44, band-gaps, optical phonon frequencies (ωTO and ωLO), the static and high-frequency dielectric coefficients ε (0) and ε () and the dynamic effective charge Z? were analyzed for y=0, 0.121, 0.241, 0.362 and 0.483. A significant deviation of the bulk modulus from linear concentration dependence was observed. A set of isotropic elastic parameters and related properties, namely bulk and shear moduli, Young's modulus, Poisson's ratio are numerically estimated in the frame work of the Voigt-Reuss-Hill approximation. The resistance to changes in bond length and lateral expansion in AlxYyB1−xyN increase with increasing y concentration. We observe that at y concentration about 0.035 and 0.063, AlxYyB1−xyN changes from brittle to ductile and Γ-X indirect fundamental gap becomes Γ-Γ direct fundamental gap. There is good agreement between our results and the available experimental data for the binary compound AlN, which is a support for those of the quaternary alloys that we report for the first time.  相似文献   

6.
To use solar irradiation or interior lighting efficiently, we sought a photocatalyst with high reactivity under visible light. Nitrogen and carbon doping TiO2−xyNxCy films were obtained by heating the TiO2 gel in an ionized N2 gas and then were calcined at 500 °C. The TiO2−xyNxCy films have revealed an improvement over the TiO2 films under visible light (wavelength, 500 nm) in optical absorption and photocatalytic activity such as photodegradation of methyl orange. X-ray photoemission spectroscopy, infrared spectrum and UV-visible (UV-vis) spectroscopy were used to find the difference of two kinds of films. Nitrogen and carbon doped into substitutional sites of TiO2 has been proven to be indispensable for band-gap narrowing and photocatalytic activity.  相似文献   

7.
The effects of the In-mole fraction (x) of an InxGa1−xN back barrier layer and the thicknesses of different layers in pseudomorphic AlyGa1−yN/AlN/GaN/InxGa1−xN/GaN heterostructures on band structures and carrier densities were investigated with the help of one-dimensional self-consistent solutions of non-linear Schrödinger-Poisson equations. Strain relaxation limits were also calculated for the investigated AlyGa1−yN barrier layer and InxGa1−xN back barriers. From an experimental point of view, two different optimized structures are suggested, and the possible effects on carrier density and mobility are discussed.  相似文献   

8.
Zr1−xMxW2O8−y (M=Sc, In and Y) solid solutions substituted up to x=0.04 for Zr(IV) sites by M(III) ions were synthesized by a solid-state reaction. X-ray diffraction experiments from 90 to 560 K revealed that all solid solutions had a cubic crystal structure and showed negative thermal expansion coefficients. The lattice parameters of Zr1−xMxW2O8−y were smaller than that of ZrW2O8 probably due to oxygen defects, though the ionic radii of substituted M3+ ions were larger than that of Zr4+. Order-disorder phase transition temperatures of the substituted samples drastically decreased in the order of Y, In and Sc compared to the percolation theory, and decreased with increasing M content.  相似文献   

9.
10.
The electronic, optical and structural properties of ZnxCd1−xSySe1−y quaternary alloys lattice matched to GaAs and InP are studied. The electronic band structure and density of states are computed using empirical pseudopotential method. The disorder effects are included via modified virtual crystal approximation. The bandgap computed from band structures are utilized to evaluate refractive indices, dielectric constants and ionicity factors for the alloys. Among structural properties elastic constants and bulk moduli are computed by combining the EPM with Harrison bond orbital model. All possible semiconductors from the ZnCdSSe system are found to have direct bandgap. The lattice matched alloys have larger band gap and more ionic character than the lattice matched compounds.  相似文献   

11.
Intense red phosphors, AgGd1−xEux(W1−yMoy)2O8 (x=0.0-1.0, y=0.0-1.0), have been synthesized through traditional solid-state reaction and characterized by X-ray diffraction (XRD) and photoluminescence (PL). XRD results reveal that AgGd1−xEuxW2O8 synthesized at 1000 °C has a tetragonal crystal structure, which is named as high temperature phase (HTP) AgGdW2O8. All phosphors compositions with Eu3+ show red and green emission on excitation either in the charge-transfer or Eu3+ levels. Analysis of the emission spectra with different Eu3+ concentrations reveal that the optimum dopant concentration for Eu3+ is x=0.6 in the HTP AgGd1−xEuxW2O8 (x=0.0-1.0). Studies on the AgGd0.4Eu0.6(W1−yMoy)2O8 (y=0.0-1.0) and AgGd1−xEux(W0.7Mo0.3)2O8 (x=0.0-1.0) show that the emission intensity is maximum for compositions with y=0.3 and x=0.5, respectively, and a decrease in emission intensity is observed for higher y or x values. The Mo6+ and Eu3+ co-doped AgGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped AgGd(WO4)2 in UV region. The intense emission of the tungstate/molybdate phosphors under 394 and 465 nm excitations, respectively, suggests that these materials are promising candidates as red-emitting phosphors for near-UV/blue GaN-based white LED for white light generation.  相似文献   

12.
The structural, superconducting and magnetic properties of La2Cu1−xZnxO4+δ (0≤x≤0.1) chemically oxidized by NaClO at room temperature were studied. All the samples before and after oxidation are single phase with orthorhombic structure, as indicated by their powder X-ray diffraction analysis. The iodometric titration results indicate that Zn-substituted La2Cu1−xZnxO4 is more favorable for the insertion of the excess oxygen, as compared to the Zn-free La2CuO4. The Tc suppression rate resulting from Zn substitution in La2Cu1−xZnxO4+δ is −12.4 K/%. The effective magnetic moment induced by the non-magnetic Zn ion is the order of one Bohr magneton, which decreases with increasing the Zn concentrations in the range examined. The latter two results are qualitatively well consistent with those obtained in La2−xSrxCu1−yZnyO4 with the Sr optimal doping. This reveals that the non-magnetic Zn ions play the same role in both of the La2Cu1−xZnxO4+δ with the excess oxygen content of about 0.1 and the La2−xSrxCu1−yZnyO4 with the Sr optimal doping.  相似文献   

13.
The structural, magnetic and transport properties of La1+xK1−xFe1−yCoyMoO6 (0.0≤x≤0.1 and 0.1≤y≤0.2) series are studied. At room temperature, the crystal structure is a monoclinic system with space group P21/n. The antisite defect lowers with Co doping in LaKFe1−yCoyMoO6 series. However, it increases with the substitution of K by La. Magnetizations increase with the increase in Co content (x=0) and with the La substitution for K, respectively. All compounds demonstrate semiconducting behavior. Their electrical resistivities increase with Co content for LaKFe1−yCoyMoO6 and also increase with La for La1+xK1−xFe1−yCoyMoO6. For the LaKFe1−yCoyMoO6 the electrical transport behavior can be described by Mott variable range hopping model in the studied temperature range, whereas for the La1+xK1−xFe1−yCoyMoO6 (x≠0 and y≠0) the electrical transport behavior follows the Mott and ES variable range hopping model in high and low temperature ranges, respectively. Each sample exhibits a large magnetoresistance effect.  相似文献   

14.
The first-principles full-potential linearized augmented plane-wave method within the generalized gradient approximation for the exchange-correlation functional is used to investigate the structural, electronic and magnetic properties of Zn1−xCrxSe (x=0.25, 0.5, 0.75 and 1.0). We find that Zn1−xCrxSe exhibits a half-metallic characteristic, and the ferromagnetic state is more favourable in energy than the antiferromagnetic state. The calculated total magnetic moment of Zn1−xCrxSe per Cr atom is 4.00 μB, which mainly arises from the Cr atom with a little contribution from the Se and Zn atoms. Furthermore, the robustness of half-metallicity with respect to the variation of lattice constants of Zn1−xCrxSe is discussed.  相似文献   

15.
Atomistic simulations were performed to investigate the lattice parameters, dielectric constant, and elastic constants of Y3(GaxAl5−x)O12 (x = 1, 2, 3, 4, 5) structures. The calculated lattice parameters and elastic constants are in good agreement with those in available experimental results. The pressure dependence of all studied quantities was investigated. In general, a change in the behavior of all studied quantities is found when the Ga concentration becomes more than that of the aluminum (Al) in Y3(GaxAl5−x)O12 (x = 1, 2, 3, 4, 5) structures.  相似文献   

16.
A series of Ti1−xMoxO2−yNy samples were prepared by using sol-gel method and characterized by X-ray diffraction, transmission electron microscopy and UV-vis absorption spectroscopy. All Ti1−xMoxO2−yNy samples are anatase phase. It is found that Mo, N mono-doping can increase visible light absorption, while (Mo + N) co-doping can greatly enhance absorption in whole visible region. Results of our first-principles band structure calculations reveal that (Mo + N)-doping, especially passivated co-doping can increase the up-limit of dopant concentration and create more impurity bands in the band gap of TiO2, which leads to a greatly increase of its visible-light absorption without a decrease of its redox potential. It reveals that (Mo + N) co-doped TiO2 is promising for a photocatalyst with high photocalystic activity under visible light.  相似文献   

17.
The correlated function expansion (CFE) interpolation procedure was presented to efficiently estimate principal energy band gaps and lattice constants of the quaternary alloy AlxGa1−xSbyAs1−y over the entire composition variable space. The lattice matching conditions between x and y for the alloy AlxGa1−xSbyAs1−y substrated to InAs and GaSb were obtained by optimizing the alloy lattice constant to that of the substrates. The corresponding principal band gaps (E(Γ), E(L), and E(X)) were also calculated along the lattice matching condition on each substrate (InAs and GaSb).  相似文献   

18.
CoxZnyFe3−xyO4 ferrite (x=1 to 0; y=0 to1) nanocrystals have been synthesized by reverse microemulsion method. The nanocrystals are then comprehensively characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Field emission transmission electron microscopy (FETEM), and magnetic properties were measured by using Vibrating sample magnetometer. X-ray analysis showed that all the crystals were cubic spinel. The lattice constant increased with the increase in Zn substitution. FETEM reveals that particle size varies in the range from 3 to 6 nm. As the concentration of Zn increases the magnetic behavior varies from ferromagnetic at y=0 and 0.2 to superparamagnetic to paramagnetic at y=1. The Curie temperature decreases with increasing concentration of Zn.  相似文献   

19.
A series of NaY1−yEuy(WO4)2−x(MoO4)x (x=0−2 and y=0.06−0.15) phosphors have been prepared by a combustion route. X-ray powder diffraction, photoluminescence excitation and emission spectra were used to characterize the resulting samples. The excitation spectra of these phosphors show the strongest absorption at about 396 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. Their emission spectra show an intense red emission at 616 nm due to the 5D07F2 electric dipole transition of Eu3+. As the Mo content increases, the intensity of the 5D07F2 emission of Eu3+ activated at wavelength of 396 nm increases and reaches a maximum when the relative ratio of Mo/W is 2:3. The intense red-emission of the tungstomolybdate phosphors at near-UV excitation suggests that the material is a potential candidate for white light emitting diode (WLEDs).  相似文献   

20.
The structural, electronic and elastic properties of TiCxN1−x, ZrxNb1−xC and HfCxN1−x alloys have been investigated by using the plane-wave pseudopotential method within the density-functional theory. The calculations indicate that the variations of the equilibrium lattice constants and bulk modulus with the composition are found to be linear. The calculated elastic constants C44 and shear constants as a function of alloy concentration reveal the anisotropic hardness of these compounds. The partial and total density of states (DOS) for the binary and ternary compounds had been obtained, and the metallic behavior of these alloys had been confirmed by the analysis of DOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号