首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The polycrystalline samples of Pb1−xSmx(Zr0.60Ti0.40)1−x/4O3 (PSZT) where x=0.00, 0.03, 0.06 and 0.09 were prepared by a high-temperature solid-state reaction technique. The preliminary structural analysis using X-ray diffraction (XRD) data collected at room temperature has confirmed the formation of single-phase compounds in tetragonal crystal system. The morphological study of each sample using scanning electron microscope (SEM) has revealed that the grains are uniformly distributed through out the surfaces of the samples. Using complex impedance spectroscopy (CIS) technique, the electrical impedance and modulus properties of the materials were studied in a wide range of temperatures at different frequencies. The impedance analysis indicates the presence of bulk resistive contributions in the materials which is found to decrease on increasing temperature. The nature of variation of resistances with temperature suggests a typical negative temperature coefficient of resistance (NTCR) type behavior of the materials. The complex modulus plots clearly exhibits the presence of grain boundaries along with the bulk contributions in the PSZT materials. The presence of non-Debye type of relaxation has been confirmed by the complex impedance analysis. The variation of dc conductivity (bulk) with temperature demonstrates that the compounds exhibit Arrhenius type of electrical conductivity.  相似文献   

2.
The polycrystalline Bi1?x Gd x FeO3 (BGFO) (x=0.0, 0.05, 0.10, 0.15, 0.20) materials were synthesized by a solid-state reaction (mixed oxide) technique. Preliminary X-ray structural analysis of the compounds confirmed the formation of single-phase polycrystalline samples. Room temperature scanning electron micrographs of the materials revealed the size, type and distribution of grains on the surface of samples. Studies of impedance, electrical modulus and electric conductivity of the materials in a wide frequency (10–1000 kHz) and temperature (30–500 °C) range using a complex impedance spectroscopy technique have provided considerable vital information on contribution of grains, grain boundary and interface in these parameters. A strong correlation between these electrical parameters and microstructures (bulk, grain boundary, nature of charge carrier, etc.) of the materials was established. The frequency dependence of electric modulus and impedance of the material shows the presence of non-Debye type of relaxation.  相似文献   

3.
The polycrystalline samples of Pb(Zr0.65−xMnxTi0.35)O3 (PZMT) (x=0, 0.05, 0.10, 0.15) were prepared by a high-temperature solid-state reaction technique. Detailed studies on the effect of compositional variation of manganese (Mn) on the electrical behavior (complex impedance Z*, complex modulus M*, electrical conductivity and relaxation mechanisms) of the PZMT systems have been carried out by a nondestructive complex impedance spectroscopy (CIS) technique at 400 °C. The Nyquist plots suggest that the grains only are responsible in the conduction mechanism of the materials. The occurrence of single arc in the complex modulus spectrum of all the compositions of Mn confirms the single-phase characteristics of the PZMT compounds, and also confirms the presence of non-Debye type of multiple relaxation in the material.  相似文献   

4.
Polycrystalline samples of Tb1−xAlxMnO3 (x = 0, 0.1, 0.2) have been synthesized by means of standard high-temperature solid-state reaction technique. Detailed studies on the effect of compositional variation of aluminum (Al) on the electrical behavior (complex impedance Z*, complex modulus M*, and relaxation mechanisms) of the parent TbMnO3 have been performed by using the nondestructive complex impedance spectroscopy technique at temperatures above room temperature. In the temperature range covered, the impedance plots signalize that the grains are the unique responsible for the conduction mechanism of the concerned material. The impedance spectra are well modeled in terms of electrical equivalent circuit with a grain resistance (Rg) and constant phase element impedance (ZCPE). The conductivity data of the undoped and Al-doped samples are well fitted by the universal Jonscher's power law. The resulting fitting parameters indicate that for the studied samples, the hopping process occurs between neighboring sites. Activation energy values for dc conductivity are calculated for undoped and Al-doped samples and found to decrease when Al is incorporated. In turn, the emergence of single arc in the complex modulus spectrum for all the compositions of Al suggests that for the studied samples only one type of relaxation behavior is present at the selected temperatures. A non-Debye-type relaxation is clearly verified. The relaxation process in the present samples seems to be composition and temperature dependent, particularly at higher frequencies.  相似文献   

5.
Titanate barium (BaTiO3)-type oxide ceramics Ba0.8La0.133Ti1?x Sn x O3 (BLTS) (here x=0.15 and 0.2) have been synthesized by the standard solid-state reaction method. Preliminary room temperature X-ray study confirms the formation of single-phase compounds in a rhombohedral crystal system. The electrical properties of BLTS were studied using the ac impedance spectroscopy technique over a wide range of temperature (120–320 K) in the frequency range of 40 Hz to 10 MHz. The presence of a single arc in the complex modulus spectrum at different temperatures confirms the single-phase character of the BLTS compounds.  相似文献   

6.
Polycrystalline solid solutions of (Bi1 ? x Sb x )2Se3 (x = 0, 0.025, 0.050, 0.075, 0.100) were prepared using a facile method based on the conventional melting technique followed by annealing process. X-ray analysis and Raman spectroscopical measurements revealed formation of Bi2Se3 in single phase. The electrical and thermoelectric properties have been studied on the bulk samples in the temperature range 100–420 K. The electrical conductivity measurements show that the activation energy and room-temperature electrical conductivity dependences on the Sb content respectively exhibit minimum and maximum values at x = 0.05. The thermoelectric power exhibited a maximum value near the room temperature suggesting promising materials for room-temperature applications. The highest power factor value was found to be 13.53 μW K?2 cm?1 and recorded for the x = 0.05 compound.  相似文献   

7.
Chalcogenide bulk alloys of Agx (As0.4Se0.6) 100−x (x=5, 7.5, 10, 12.5, 15 and 17.5) system were prepared by the conventional melt-quench technique. The d.c. electrical conductivity (σ) and thermoelectric power (TEP) measurements were carried out in the temperature range from 83 to 373 K and from 253 to 373 K, respectively. Variations of both σ and TEP with ambient temperature proved the p-type semiconducting behaviour of these materials. The current density-electric field characteristics were found to be linear. The activation energies, calculated from both the electrical conductivity Eσ and thermoelectric power Es, were found to be dependent on composition.  相似文献   

8.
Polycrystalline sample of Ca3Nb2O8 was prepared by a high-temperature solid-state reaction technique. X-ray diffraction (XRD) analysis confirms the formation of single-phase compound of hexagonal (rhombohedral) crystal structure at room temperature. Scanning electron micrograph of the material showed uniform grain distribution on the surface of the sample. Detailed studies of dielectric properties of the compound, studied in a wide frequency range (102-106 Hz) at different temperatures (25-500 °C), exhibit a dielectric anomaly suggesting phase transition of ferroelectric-paraelectric and structural type at 300 °C. Electrical properties of the material were analyzed using a complex impedance technique. The Nyquists plot showed the presence of bulk effect in the material in the studied temperature range. Studies of electrical conductivity over a wide temperature range suggest that the compound has negative temperature coefficient of resistance behavior.  相似文献   

9.
《Physica B: Condensed Matter》2005,355(1-4):188-201
Complex impedance analysis of a new rare earth-based ceramic oxide, LaLiMo2O8, prepared by a standard solid-state reaction technique has been carried out. Material formation under the reported conditions has been confirmed by X- ray diffraction studies. A preliminary structural analysis indicates the crystal structure to be orthorhombic. Electrical properties of the material sample have been studied using AC impedance spectroscopy technique. Impedance spectrum results indicate that the electrical properties of the material are strongly dependent on temperature and it bears a good correlation with the sample microstructure (i.e. the presence of bulk, grain boundary, etc.) in different temperature ranges. Evidences of temperature-dependent electrical relaxation phenomena in the material have also been observed. The bulk resistance, evaluated from complex impedance spectrum has been observed to decrease with rise in temperature showing a typical negative temperature coefficient of resistance (NTCR)-type behavior like that of semiconductors. The DC conductivity shows typical Arrhenius behavior when observed as a function of temperature. The AC conductivity spectrum has provided typical signature of an ionically conducting system and is found to obey Jonscher's universal power law. Modulus analysis has indicated the possibility of hopping mechanism for electrical transport processes in the system with non-exponential-type conductivity relaxation.  相似文献   

10.
The ac conductivity and dielectric properties of spinel ferrite nanoparticles of Li0.1(Ni1−xZnx)0.8Fe2.1O4 (x=0.0–1.0) prepared by the chemical co-precipitation method were investigated as functions of frequency and temperature by using a complex impedance technique. Parts of the precipitated powders were pressed into a disk-shape and were sintered at 1473 K for 2 h to increase the particle size to the bulk scale (dimensions >100 nm). The ac conductivity of the samples increases with increasing temperature, ensuring the semiconducting behavior of both nano and bulk samples, in agreement with the Koops model to describe heterogeneous structures. The significant decrease in ac conductivity σac, dielectric constant, and dielectric loss of the as-prepared nanosamples compared to their bulk counterparts is correlated to the small size of the grain compared to the grain boundary size. This might be useful for many applications requiring the reduction of eddy current effects.  相似文献   

11.
Complex impedance spectroscopy (CIS) technique has been utilized to investigate the intra- and intergranular contributions to the impedance in pristine and wolframium (tungsten, W) -substituted strontium bismuth tantalate [SrBi2(Ta1−xWx)2O9 (SBTW); x=0.0, 0.025, 0.05, 0.075, 0.1 and 0.2] ceramics as a function of temperature and frequency. CIS studies reveal that the electrical relaxation process was temperature dependent and non-Debye type. The temperature dependence of the relaxation time was found to obey the Arrhenius law. DC conductivity of the studied samples obtained from the CIS data decreased for W content upto x=0.05, followed by a subsequent increase with x>0.05. Electrical conductivity data including the typical values of the activation energies at high temperature indicated that the conductivity in the studied ceramics was essentially due to the contribution of doubly ionized oxygen vacancies to the conduction process.  相似文献   

12.
Normal state electrical and thermal properties, including electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) of the CaAlxSi2−x (x=0.9-1.2) system were investigated. It is found that the electrical resistivity and Seebeck coefficient exhibit a typical metallic character throughout the temperature range investigated, and the metallicity of this series is enhanced with increase in Al/Si ratio. On the other hand, the thermal conductivity shows a weak temperature variation at low temperatures, whereas κ follows a T2-dependence for T>150 K. Analysis of the electronic thermal resistivity based on Klemen’s model reveals that the scattering of electrons from the defects and static imperfections becomes dominant as the temperature approaches Tc. These results are discussed in the light of simultaneous existence of various crystal structures and development of ultra-soft phonon mode recently observed in the CaAlSi system.  相似文献   

13.
The transport properties of Nd-doped perovskite materials (La0.7−xNdx)Sr0.3Mn0.7Cr0.3O3 (x≤0.30) were investigated using impedance spectroscopy techniques over a wide range of temperatures and frequencies. AC conductance analyses indicate that the conduction mechanism is strongly dependent on temperature and frequency. The DC conductance plots can be described using the small polaron hopping (SPH) model, with an apparent reduction of the polaron activation energy below the Curie temperature TC. Complex impedance plots exhibit semicircular arcs described by an electrical equivalent circuit. Off-centered semicircular impedance plots show that the Nd-doped compounds obey to a non-Debye relaxation process. The conductivity of grains and grain-boundaries has been estimated. The activation energies calculated from the conductance and from time relaxation analyses are comparable. This indicates that the same type of charge carriers is responsible for both the electrical conduction and relaxation phenomena.  相似文献   

14.
Crystal structure, thermogravimetry (TG), thermal expansion coefficient (TEC), electrical conductivity and AC impedance of (Ba0.5Sr0.5)1-xLaxCo0.8Fe0.2O3-δ (BSLCF; 0.05?x?0.20) were studied in relation to their potential use as intermediate temperature solid oxide fuel cell (IT-SOFC) cathode. A single cubic pervoskite was observed by X-ray diffraction (XRD). The TEC of BSLCF was increasing slightly with the increasing content of La, and all the compounds showed abnormal expansion at high temperature. Proved by the TG result, it was associated with the loss of lattice oxygen. The electrical conductivity, which is the main defect of Ba0.5Sr0.5 Co0.8Fe0.2O3-δ (BSCF), was improved by La doping, e.g., the compound of x=0.20 demonstrated a conductivity of σ=376 S cm−1 at 392 °C. The increase of electrical conductivity resulted from the increased concentration of charge carrier induced by La doping. In addition, the AC impedance revealed the better electrochemical performance of BSLCF. For example, at 500 °C, the sample with composition x=0.15 yielded the resistance values of 2.12 Ω cm2, which was only 46% of BSCF.  相似文献   

15.
Nanocrystalline samples of Pb1−yLay(Ti1−xMnx)(1−y/4)O3 (PLMT) (y=0.06, x=0, 0.04, 0.07 and 0.10) were prepared by mechanical activation process (i.e., ball milling) followed by some annealing. The formation of single phase tetragonal crystal structure is confirmed by high-resolution X-ray diffraction study and by High resolution transmission electron micrographs (HRTEM), nano-scale compounds. The electrical behavior (i.e., impedance (Z) and electrical modulus (M)) of PLMT ceramics was studied by impedance spectroscopy technique in high temperature range. This study was carried out by means of the simultaneous analysis of the complex impedance (Z?) and electrical modulus (M*) functions in a wide frequency range (1 kHz-1 MHz). Impedance analysis has shown the grain and grain boundary contributions by an equivalent circuit model. Modulus analysis has provided vast information on charge transport processes. The simultaneous representation of the imaginary part of impedance and electric modulus (Z″, M″) vs. frequency revealed the localization of relaxation. The activation energy obtained from relaxation data may be attributed to oxygen ion vacancies.  相似文献   

16.
《Solid State Ionics》2006,177(7-8):669-676
The electrical conductivity of sintered samples of Ce1−xNdxO2−x / 2 (0.01  x  0.2) was investigated in air as a function of temperature between 150 and 600 °C using AC impedance spectroscopy. The individual contribution of the bulk and grain boundary conductivities has been discussed in detail. In the low temperature range (< 350 °C), the activation enthalpy for bulk conductivity exhibited a shallow minimum at 3 mol% Nd, with a value of 0.68 eV. The activation enthalpy also produced a shallow minimum at 5 mol% Nd in the high temperature range (> 350 °C), with a value of 0.56 eV. It was shown that Ce1−xNdxO2−x / 2 is an electrolyte that obeys the Meyer Neldel rule. The bulk conductivity data measured by others for the same system has also been recalculated and re-evaluated to facilitate easier comparison with our own data.  相似文献   

17.
Solid-state reaction processing technique was used to prepare ZnxNb1−xO (0≤x≤0.02) polycrystalline bulk samples. In the present study, we find that their lattice parameters a and c tend to decrease with increasing amount of Nb additive. The electrical conductivity of all the Zn1−xNbxO samples increased with increasing temperature, indicating a semiconducting behavior in the measured temperature range. The addition of Nb2O5 to ZnO led to an increase in the electrical conductivity and a decrease in the absolute value of the Seebeck coefficient. The best performance at 1000 K has been observed for nominal 0.5 at% Nb-doped ZnO, with an electrical resistivity of about 73.13 (S cm−1) and Seebeck coefficient of ∼257.36 μV K−1, corresponding to a power factor (S2σ) of 4.84×10−4 Wm−1 K−2. The thermal conductivity, κ, of the oxide decreased as compared to pure ZnO. The figure of merit ZT values of ZnO-doped Nb2O5 samples are higher than the ZnO pure sample, demonstrating that the Nb2O5 addition is fairly effective for enhancing thermoelectric properties.  相似文献   

18.
A few compositions in the system Ba1???x La x SnO3 (x?=?0.00, 0.01, 0.05, and 0.10) have been synthesized via the solid state ceramic route. The synthesized powders have been characterized using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, Raman spectroscopy, Fourier transformation infrared, thermogravimetrical analysis, and differential thermal analysis techniques. The powder X-ray diffraction pattern of the samples confirms the formation of a single-phase solid solution only up to 0.50?≤?x. It was found that all the samples have a cubic crystal structure. The electrical properties of La-modified BaSnO3 were studied using ac impedance spectroscopy technique over a wide range of temperatures (50–650 °C) in the frequency range of 10 Hz–13 MHz. The complex impedance plots above 300 °C show that total impedance is due to the contributions of grain and grain boundaries. The resistance of these contributions has been determined. Variation of these resistances with temperature shows the presence of two different regions with different slopes. The nature of the variation of conductivity of the grain and grain boundaries is different in different regions. Based on the value of activation energy, it is proposed that conduction via hopping of doubly ionized oxygen vacancies (VO ??) is taking place in the temperature region of 300–450 °C, whereas in the temperature region of 450–650 °C, it is due to proton, i.e., OH? ions, hopping.  相似文献   

19.
The present work focuses on the structural, optical, and electrical properties of Zn1?x Cd x Se (0.1≤x≤0.25) compounds. The compounds were synthesized by solid state reaction. X-ray diffraction (XRD) patterns confirm that the samples have cubic single phase (zinc-blende) crystal structure with space group F-43m. The crystal structural parameters were refined by the Rietveld method using the FullProf program. It was found that the lattice parameters increase linearly with increasing the Cd content and obeys Vegard’s law. The refined values of the crystallite size and the bond lengths increase with increasing the Cd content. The energy band gap of the samples has been calculated and it was found that it decreased as Cd increased. The conductivity of the samples increases with increasing both of composition parameter x and temperature, and showing semiconducting behavior.  相似文献   

20.
The Na x Li1-x CdVO4 (x = 0.5, 1) orthovanadates were prepared using a solid-state reaction method. The x-ray diffraction patterns (XRDP) of both materials reveal the formation of the Na2CrO4 structure. Vibrational study confirms the existence of [VO4]3? group. Electrical measurements of our compounds have been investigated using complex impedance spectroscopy (CIS) in the frequency and temperature range 209 Hz–1 MHz and 589–703 K, respectively. Nyquist plots reveal the presence of tow contributions, an equivalent circuit was proposed. DC conductivity shows electrical conduction in the material as a thermally activated process. The AC conductivity is explained using the non-overlapping small polaron tunneling (NSPT) conduction mechanism. A relationship between crystal structure and ionic conductivity was established and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号