首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
氟两相催化反应的进展   总被引:6,自引:0,他引:6  
廖永卫  陈卫平 《有机化学》2001,21(3):181-190
对氟两相催化反应作一介绍。氟两相体系是一种新的相分离和固定化技术,全氟溶剂与大多数有机溶剂不互溶,而在催化剂分子中引入适当数量、大小和形状的氟尾能使之优先溶于全氟溶剂,在氟两相体系中进行催化反应就使催化剂的回收再用产物的纯化都变得极为方便。  相似文献   

2.
In this work, osmium-catalyzed asymmetric dihydroxylation (AD) of methyl trans-cinnamate was studied. Osmium and chiral ligand catalysts were immobilized in ionic liquid only, without any other reaction solvents, while the recovery of the product was performed by extraction with supercritical CO2, and compared with results obtained by extractions with organic solvents such as hexane and diethyl ether. In supercritical CO2 extraction experiments, optimal extraction pressure was found and ionic liquid chosen, so that the highest reaction yields coupled with lowest osmium content in the crude product can be achieved. Finally, recycle experiments of the same (ionic liquid + catalytic system) mixture were successfully conducted. Application of ionic liquids and supercritical CO2 in osmium catalyzed AD allows for the isolation of the diol basically without contamination with osmium, in high yield and enantiomeric excess, and it makes possible the efficient reuse of ionic liquid solvent and the catalytic system.  相似文献   

3.
During further improvement of a high-throughput, solution-phase synthesis system, new workup tools and apparatus for parallel liquid-liquid extraction and evaporation have been developed. A combination of in-house design and collaboration with external manufacturers has been used to address (1) environmental issues concerning solvent emissions and (2) sample tracking errors arising from manual intervention. A parallel liquid-liquid extraction unit, containing miniature high-speed magnetic stirrers for efficient mixing of organic and aqueous phases, has been developed for use on a multichannel liquid handler. Separation of the phases is achieved by dispensing them into a newly patented filter tube containing a vertical hydrophobic porous membrane, which allows only the organic phase to pass into collection vials positioned below. The vertical positioning of the membrane overcomes the hitherto dependence on the use of heavier-than-water, bottom-phase, organic solvents such as dichloromethane, which are restricted due to environmental concerns. Both small (6-mL) and large (60-mL) filter tubes were developed for parallel phase separation in library and template synthesis, respectively. In addition, an apparatus for parallel solvent evaporation was developed to (1) remove solvent from the above samples with highly efficient recovery and (2) avoid the movement of individual samples between their collection on a liquid handler and registration to prevent sample identification errors. The apparatus uses a diaphragm pump to achieve a dynamic circulating closed system with a heating block for the rack of 96 sample vials and an efficient condenser to trap the solvents. Solvent recovery is typically >98%, and convenient operation and monitoring has made the apparatus the first choice for removal of volatile solvents.  相似文献   

4.
A system enabling coupling of pressurized capillary electrochromatography (pCEC) with off-column amperometric detection (AD) is reported in which conduction of the current in pCEC was achieved through a cellulose acetate-coated porous polymer joint, and the effect of the high-voltage field applied to pCEC for AD was also eliminated. Effects of supplementary pressure on the porous polymer joint and the effects on AD of capillary columns of different i.d. were investigated. The performance of the pCEC–AD system with the porous polymer joint was evaluated with phenol and hydroquinone using sulfonated stearyl methacrylate monolithic columns. The separation efficiency of the column in pCEC–AD, using the proposed off-column detection with the cellulose acetate membrane joint, was comparable with that of pCEC–UV using on-column detection. Compared with end-column detection using a 50 μm i.d. capillary column without a joint, a higher signal-to-noise ratio was achieved, even using a 100 μm i.d. capillary column with a joint. Successful separation and detection of dopamine and epinephrine were also achieved by use of this system.  相似文献   

5.
Summary The application of capillary electrophoresis (CE) to the separation and determination of the active ingredient, 10-hydroxy-2-decenoic acid, in royal jelly with direct on-column UV detection at 214 nm is described. Using a cathodic injection and anodic detection scheme, 10-hydroxy-2-decenoic acid (10-HDA) was separated and detected in less than 10 min in a fused silica capillary column with a phosphate buffer at pH 7.3 with an applied voltage of 20 KV followed by direct UV detection. The use of cetyltrimethylammonium bromide (CTAB) as electroosmotic flow modifier allows the rapid separation of 10-HDA from other constituents in royal jelly by reversing the direction of electroosmotic flow. The influence of organic solvents in the electrolyte on separation selectivity is also discussed.  相似文献   

6.
Huie CW 《Electrophoresis》2003,24(10):1508-1529
A review of recent developments in theoretical as well as application studies concerning the use of organic solvents, either as purely nonaqueous solvents, hydro-organic mixtures, or a combination of an organic solvent with another organic modifier(s), in the sample matrix and/or separation buffer for effecting sample pretreatment and/or improving separation performances in capillary electrophoresis (CE) is presented. In particular, recent advances made in furthering the basic understanding of selectivity changes that occur in capillary zone electrophoresis due the presence of organic solvents in the separation medium, based on in-depth studies of fundamental processes, such as acid-base chemistry, ion-ion and ion-solvent interactions, were discussed in detail. The utilization of organic solvents for improving the resolution of highly challenging and important separations, i.e., those involving the separation of positional and optical isomers, was also critically reviewed. Furthermore, a comprehensive survey of the use of organic solvents for on-line sample pretreatment, e.g., minimizing aggregation and maximizing solubilization of hydrophobic analytes, improving concentration detection sensitivity for analytes via the use of sample stacking, was presented and discussed. Moreover, recent applications involving the use of organic solvents for improving the CE separations of a variety of molecular species with significance in various disciplines, including biological, environmental and pharmaceutical areas, were summarized and tabulated.  相似文献   

7.
For almost 10 years, silica-based monolithic stationary phases have been used in numerous fields of analytical chemistry, especially when high flow rate is required or for the separation of high molecular weight compounds such as peptides. In comparison with particulate stationary phases, the macroporous structure of the silica rod induces low pressure drops, which allows the use of high flow rates, leading to a dramatic reduction of the analysis duration. We suggest another use of this type of phases with mobile phases having a high viscosity, such as ethanol–water mixtures. These mobile phases are environmentally friendly, avoiding the use of toxic solvents such as methanol and acetonitrile, and consequently the necessary cleaning of waste is reduced. In this paper, the eluting strength of different hydro-organic mobile phases and their efficiencies are compared on Chromolith RP-18e. Due to higher eluting strength, the use of ethanol–water mixtures also allows decreasing the amount of organic solvent required to achieve a separation, whereas, despite a higher viscosity, the chromatographic efficiencies are as good as those obtained with classical mobile phases. Finally, separation of pesticides (triazines) and sunscreen molecules are presented.  相似文献   

8.
The use of organic solvents or mixture of solvents in capillary electrophoresis is gaining wider attention. The electroosmotic flow mobility of eight organic solvents (acetonitrile, acetone, dimethylformamide, dimetylsulphoxide, propylene carbonate, methanol, ethanol, n-propanol) and of mixtures of several solvents (methanol-acetonitrile, methanol-propylene carbonate, acetonitrile-propylene carbonate) has been studied. The influence of 1,3-alkylimidazolium salts in different solvents on the separation of different analytes has been investigated. Some of these salts have shown usefulness for matrix-assisted laser desorption ionization matrices and off-line analysis of electrophoresis fractions. It also appears that nonaqueous capillary electrophoresis with 1,3-alkylimidazolium salts as background electrolytes is suitable for separation small inorganic ions.  相似文献   

9.
We propose a method for the modification of surfaces of microchannels in chips fabricated in polycarbonate (PC) that makes the devices resistant to a range of organic solvents. Coating of PC with branched polyethyleneimine (BPEI) with the use of trimethylpropane triglycidyl ether (TTE) as a linker renders the devices resistant to toluene, benzene, acetonitrile, tetrahydrofuran, dioxane and ethylene dichloride. The optimized procedure of modification allows for continuous operation of the chips for several hours without dissolution of PC. Additional modification with the use of Krytox? allows for the use of Fluorinert (FC-40) as the continuous phase and for generation and handling of droplets of organic solvents that are miscible with water.  相似文献   

10.
The versatility of non-aqueous capillary electrophoresis (NACE) results mainly from the variety of physico-chemical properties of the different solvents. They provide solubility for a wide range of analytes, enable to control electrophoretic selectivity, but affect in some cases UV absorbance detection. The coupling of NACE to electrospray mass spectrometry (ESI-MS) allows to cope with the high UV cut-off of some CE relevant solvents (e.g., formamides). In this paper the pure organic solvents methanol, acetonitrile, dimethylsulfoxide, formamide, N-methylformamide and N,N-dimethylformamide are evaluated against water for the preparation of ammonium acetate electrolytes to separate the basic model substances 2-aminobenzimidazole, procaine, propranolol and quinine with NACE-MS. MS coupling is assisted with the sheath liquid water-isopropanol (1:4, v/v) with 0.1% formic acid. The goal of the paper is to assess the influence of the solvent on selectivity, separation speed, and peak efficiency for a given set of model compounds on a simple empirical basis. It should give the user an idea how the separation quality is changed when nothing but the running solvent is altered. The obtained efficiency results were discussed with respect to physico-chemical models described in literature (assuming longitudinal diffusion as the only source of band broadening), but no satisfying correlations with solvent properties could be traced. The feasibility of all six organic solvents for MS coupling was demonstrated and the influence of the separation solvent on the MS detection performance was compared. In the seven different solvents, the shortest run time was obtained with acetonitrile, the best peak resolution with the amphiprotic solvents (especially methanol) best peak efficiency with methanol and formamide, and the most sensitive ESI-MS detection with acetonitrile and methanol, but with only slight advantage to water.  相似文献   

11.
A new method for separation of several amino acids using mobile phases (MPs) containing mixed micelles as well as 1-butanol and aprotic organic solvents as modifying additives has been developed. The effect of experimental factors (the ratio of MP components, nature of stationary phase) on separation of amino acids is investigated and all conditions for separation are optimized. It was found that separation of three amino acids l-lysine, l-histidine and l-tryptophan on silica gel stationary phase in the interval from micrograms to milligrams is available. The proposed method is simple and allows determining the amino acids in the linear interval of 0.1-1.5mg.  相似文献   

12.
Ghanem A  Hoenen H  Aboul-Enein HY 《Talanta》2006,68(3):602-609
A direct liquid chromatographic enantioselective separation of a set of β-blocker enantiomers on the new immobilized and conventional coated amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA and Chiralpak AD, respectively) was studied using methanol as mobile phase and ethanolamine as an organic modifier (100:0.1, v/v). The separation, retention and elution order of the enantiomers on both columns under the same conditions were compared. The effect of the immobilization of the amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase on silica (Chiralpak IA) on the chiral recognition ability was noted when compared to the coated phase (Chiralpak AD) which possesses a higher resolving power than the immobilized one (Chiralpak IA). A few racemates, which were not or poorly resolved on the immobilized Chiralpak IA were most efficiently resolved on the coated Chiralpak AD. However, the immobilized phase withstand solvents like dichloromethane when used as an eluent or as a dissolving agent for the analyte. The versatility of the immobilized Chiralpak IA in monitoring reactions performed in dichloromethane using direct analysis techniques without further purification, workup or removal of dichloromethane was studied on a representative example consisting of the lipase-catalyzed irreversible transesterification of a β-blocker using either vinylacetate or isopropenyl acetate as acyl donor in dichloromethane as organic solvent.  相似文献   

13.
Fractionation of xylo-oligosaccharides (XOS) using a liquid–liquid solvent system can be a difficult endeavor due to the high solubility of XOS in water. Use of a nonaqueous solvent system is a solution for XOS fractionation. XOS are gaining attention as a prebiotic food additive and are abundant in agricultural residues. We describe the use of a molecular modeling approach to determine which solvents and at what volume ratio to use for XOS fractionation. The conductor-like screening model for real solvents was used to predict the partition coefficients of xylose and two major functional XOS—xylobiose and xylotriose, based on the structure of the compounds and the composition of solvents in a panel of nonaqueous biphasic solvent systems. Eleven common solvents used in countercurrent chromatography were used to build 12 biphasic solvents model systems that were then evaluated and compared using shake flask experiments to determine which could fractionate the three XOS from a mixture. The model and experimental results indicate that a heptane/n-butanol/acetonitrile system at a volume ratio of 9:4:5 would result in a partition coefficient close to the region of optimal separation for a countercurrent chromatography fractionation.  相似文献   

14.
Green chemistry and sustainability is now entirely encompassed across the majority of pharmaceutical companies and research labs. Researchers’ attention is careworn toward implementing the green analytical chemistry principles for more eco‐friendly analytical methodologies. Solvents play a dominant role in determining the greenness of the analytical procedure. Using safer solvents, the greenness profile of the methodology could be increased remarkably. In this context, a green chromatographic method has been developed and validated for the simultaneous determination of phenylephrine, paracetamol, and guaifenesin in their ternary pharmaceutical mixture. The chromatographic separation was carried out using monolithic column and green solvents as mobile phase. The use of monolithic column allows efficient separation protocols at higher flow rates, which results in short time of analysis. Two‐factor three‐level experimental design was used to optimize the chromatographic conditions. The greenness profile of the proposed methodology was assessed using eco‐scale as a green metrics and was found to be an excellent green method with regard to the usage and production of hazardous chemicals and solvents, energy consumption, and amount of produced waste. The proposed method improved the environmental impact without compromising the analytical performance criteria and could be used as a safer alternate for the routine analysis of the studied drugs.  相似文献   

15.
Liquid gases (LG), i.e. low boiling compounds with vapor pressures below 5 bar at room temperature, are introduced as solvents for trace analyses. A system for preparin, diluting and handling LG solutions safely and conveniently in 5 to 500 μl amounts was developed as well as a syringe for direct injection of μl-LG samples into capillary GC. Even technical grade LG are of high purity. GC/FID of LG solutions (starting at ?60°C) allows the separation of volatile traces from the solvent peak: e.g., dichloromethane can be measured in the picogram range.  相似文献   

16.
A scanning tunneling microscopy (STM) study of a star-shaped hexa-peri-hexabenzocoronene (HBC-star) derivative at solid-solution interfaces is presented. The star-shape of the molecules provides voids at their periphery which can be filled by smaller molecules. The use of solvents with different affinities to fill the voids allows for the fine-tuning of the structure of self-assembled architectures of HBC-stars. This concept is demonstrated by the use of solvents of different polarity and size, which leads to the formation of complex, epitaxial architectures at the interface. For small polar solvent molecules, a surprising decrease of the tunneling barrier is observed. The self-assembled architecture may serve as a useful model system for studying the dependence of electron tunneling on order, mobility, and polarity of adsorbates.  相似文献   

17.
The aim of this investigation was to minimize the experimental effort for solvent system selection in counter-current chromatography. The separation mechanism in counter-current chromatography is based exclusively on the partitioning of the solute between the two liquid phases. Therefore, a quantum chemical method combined with statistical thermodynamics (conductor-like screening model for real solvents, COSMO-RS) was used for the prediction of the partition coefficient. A comparison of the experimental and predicted data for five model solutes systems demonstrated the potential of the use of COSMO-RS as a screening tool for the solvent system selection.  相似文献   

18.
随着绿色化学的不断发展,如何在分析过程中应用和体现绿色化学特点,避免分析过程对环境产生二次污染及对人员造成危害也得到了关注。开发和使用具有绿色化学特点的溶剂和方法是分析工作者努力的方向之一。在已经出现的新溶剂中,低共熔溶剂(DES)与离子液体(ILs)物理性质相似,并具有环境友好、不可燃、生物降解、价廉、易制备等特点,因而近几年来获得了迅速发展。该文总结了低共熔溶剂的制备、性质及分类,综述了近年来其在萃取和分离中的应用进展。  相似文献   

19.
超临界流体萃取分离离子液体与有机物及其相平衡的研究   总被引:6,自引:0,他引:6  
离子液体具有一些优良的物理和化学性质,非常有希望成为传统有机溶剂的替代溶剂.但是如何从过程物流中分离和回收离子液体将是其工业化应用的一个很大挑战.蒸馏、液液萃取和超临界萃取是目前已知的三个可行的方法.其中超临界萃取可应用于离子液体与挥发的或相对不挥发的有机物的分离,而且不存在相间交叉污染.本文从二元体系相平衡、三元体系相平衡、模型化研究和萃取实验结果方面介绍了超临界萃取方法的最新研究进展,在此基础上提出了用超临界丙烷替代超临界二氧化碳作为萃取溶剂的新思路,并探讨了该领域今后的研究方向和工业化前景.  相似文献   

20.
《Analytical letters》2012,45(14):2573-2586
Abstract

Capillary zone electrophoresis is a highly efficient analytical technique that has been shown to be particularly useful for the analysis of isomers. Using a cathodic injection and anodic detection scheme, ortho-, meta- and para-hydroxybenzoic acids were separated in a fused-silica capillary column with a phosphate buffer at pH 10.3 (25.0 mmol/1 phosphate + 0.20 mmol/1 cetyltrimethylammonium bromide (CTAB) + 10% (v/v) 1-propanol with an applied voltage of 10 KV followed by direct UV detection. The use of CTAB as electroosmotic flow modifier allows the rapid separation of the three isomers by reversing the direction of electro-osmotic flow. The influence of pH, CTAB concentration and organic solvents on the migration behaviour of the solutes were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号