首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work blends of poly(ethylene-co-vinyl alcohol) (EVOH) with different ethylene contents (27, 32, 38 and 44 mol%) and poly(methyl methacrylate) (PMMA) were prepared by mechanical mixing in the melted state. The miscibility and melting behavior as a function of blend composition and the ethylene content in EVOH copolymers were investigated by means of differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). The morphology of the cryofractured surfaces was examined by scanning electron microscopy (SEM). DSC and DMTA data show that EVOH/PMMA blends are immiscible, independent of EVOH and blend composition. The SEM analysis in agreement with DMTA analysis indicates that the morphology of phases depends on the blend composition, with phase inversion occurring as the concentration of one or other polymer component increases. However, the copolymer composition apparently does not affect the domain size distribution for blends containing 20 wt% of EVOH or 20 wt% of PMMA. A better phase adhesion is observed mainly for blends with 50 wt% of each polymer component.  相似文献   

2.
The interfacial tension of biodegradable melt-mixed blends of poly(butylene adipate-co-terephthalate), PBAT, and poly(ethylene-co-vinyl alcohol), (EVOH), was measured by breaking thread (BT), imbedded fiber retraction (IFR), and rheological methods. The PBAT-rich blends were prepared under different melt mixing conditions in order to investigate the effect of mixing conditions and possibility of reactive mixing between the blend components on the blend morphology, rheology, mechanical properties and interfacial tension values. The conditions were varied based on a Taguchi design of experiment using four factors namely EVOH content (0–30 wt%), mixing time (2–15 min), rotor speed (50–90 rpm), and mixing temperature (185–200 °C), each varying at three levels. The average size of EVOH droplets in PBAT matrix was determined for each blend by a field emission-scanning electron microscopy technique. The values of interfacial tension of PBAT/EVOH were found to be 2.57 ± 0.22 and 2.73 ± 0.30 mN m−1 by the BT and IFR methods, respectively. The Palierne, Gramespacher, and Bousmina models were fitted to the rheological data to verify the interfacial tension of the blends. The continuous relaxation spectrum of the blends was determined in order to obtain the relaxation time of the EVOH droplets in the PBAT matrix. The Taguchi analysis revealed that the most effective factor is the EVOH content, and other factors do not play a significant role in the ultimate properties of the blends. Finally, based on the obtained mechanical properties, the possibility of reactive mixing under the applied mixing conditions was ruled out by means of repeated differential scanning calorimetry (DSC) and rheological measurements.  相似文献   

3.
Based on previous work a number of optimum extruded blends with high contents of a high barrier ethylene-vinyl alcohol copolymer were selected and characterized in terms of phase morphology, water sorption and barrier properties. Blend components were an ethylene vinyl-alcohol copolymer (EVOH with 32 mol% ethylene), an amorphous polyamide (aPA) and a nylon-containing ionomer. A fine two phase structure was found for these blends in all cases. However, Raman spectroscopy results indicated a poor interface interaction between the blend components in the case of the EVOH/aPA blends. Higher interface interaction had been previously found in the dry EVOH/ionomer blends. Equilibrium moisture solubility and diffusion were found to be higher than expected from simple additivity. However, the oxygen transmission rate was found to be clearly lower than expected from the rule of mixtures, particularly under dry conditions, fitting closely a simple Maxwell model.  相似文献   

4.
In this study, high oxygen barrier nanocomposite films were prepared by melt blending of low-density polyethylene/ethylene vinyl alcohol/nanoclay/polyethylene-grafted-maleic anhydride (LDPE/EVOH/nanoclay/LDPE-g-MA). Effect of each component presence was determined by using Box-Behnken experiment design methodology. For all the responses obtained, R 2 was between 0.956 and 0.981 indicating a very good fitting of the experimental data with the response surface method (RSM) in the models. Oxygen transfer rate (OTR) results shown that the addition of EVOH, compatibilizer, and nanoclay in formulations significantly decreases oxygen permeability. The experimental results showed that addition of 30 wt % EVOH, 4 wt % nanoclay, and 5 wt % LDPE-g-MA to the LDPE matrix gave the best oxygen barrier properties. The crystallization behaviors of the samples and thermal analysis have been characterized by using differential scanning calorimetry (DSC). The addition of nanoclay to the blends has resulted in increased crystallinity of LDPE phase. The state of nanoclay dispersion in the samples was examined by the X-ray diffraction (XRD) tests. The reduction of EVOH and nanoclay content, as well as the increase of LDPE-g-MA, has resulted in the better dispersion of nanoclay in the polymer matrix. The morphology of specimens was observed by using energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM).  相似文献   

5.
The influences of the molar mass (low, medium, and high) and content of poly(vinyl alcohol) (PVOH) dispersed by melt-blending in an ethylene vinyl alcohol (EVOH) copolymer on the morphology, microstructure, thermal, mechanical, and oxygen barrier properties were investigated. Multilayer films with external low-density polyethylene layers and inner EVOH/PVOH blend layer and respective monolayer films were elaborated and characterized. EVOH/PVOH blends exhibited a good compatibility because of the initial presence of PVOH segments in EVOH. The detailed quantitative analysis of the morphology performed for all blends showed that the finest dispersion was obtained with the PVOH with the lowest molar mass. The properties of the films as a function of the PVOH content and its molar mass were determined herein. Significant improvement of barrier properties was obtained at moderated water activities (up to aw = 0.6) by using the PVOH with the lowest molar mass. Compared to the neat EVOH material, the oxygen permeability coefficients decreased by a factor 2 by adding 15 vol% PVOH while the thermal and mechanical properties remained similar.  相似文献   

6.
The ternary blends of acrylate rubber (ACM), poly(ethyleneterephalate) (PET), and liquid crystalline polymer (LCP) were prepared by varying the amount of LCP, but fixing the ratio of ACM and PET using melt mixing procedure. The compatibility behavior of these blends was investigated with infrared spectroscopy (IR), differential scanning calorimetry (DSC), and dynamic mechanical analyzer (DMA). The IR results revealed the significant interaction between the blend components. Glass transition temperature (Tg) and melting temperature (Tm) of the blends were affected depending on the LCP weight percent in the ACM/PET, respectively. This further suggests the strong interfacial interactions between the blend components. In the presence of ACM, the nucleating effect of LCP was more pronounced for the PET. The thermogravimetric (TGA) study shows the improved thermal stability of the blends.  相似文献   

7.
The thermal oxidative stability and the effect of water on gas transport and mechanical properties of blends of polyamide 6 (PA6) with ethylene‐co‐vinyl alcohol (EVOH) and EVOH modified with carboxyl groups (EVOH‐COOH) have been investigated. The presence of EVOH reduces water vapor and oxygen gas permeability of polyamide, as well as small amounts of EVOH‐COOH further improve barrier properties, especially to oxygen. This has been explained in terms of improved interactions of the blend constituents in the amorphous phase, due to ionic linkages between the polyamide amino groups and the carboxyls of modified EVOH. The permeation to gases was found to increase with the amount of sorbed water. The morphology of the samples was found to have an effect on barrier properties, as the presence of EVOH causes the PA6 α crystalline form to increase, lowering the permeability to oxygen and water vapor. Mechanical properties are strongly affected by water sorption, as tensile modulus and strength decrease with increasing water content. Chemiluminescence (CL), infrared spectroscopy (FTIR), and tensile test were employed in order to assess the correlation between chemical composition and the thermal oxidative stability of the films aged at 110 °C in air. CL experiments suggest that the presence of EVOH and EVOH‐COOH efficiently inhibits the formation of peroxidized species during the processing, and increases the thermal oxidative stability of the films. Infrared spectroscopy showed a build‐up of carbonyl absorption in the range 1700–1780 cm?1, due to the formation of oxidation products, which is greater in the case of the pure polymer. Tensile tests on films revealed a reduction in ductility as a result of ageing for neat PA6, whereas in comparison the blends exhibit a far better long‐term stability. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 840–849, 2007  相似文献   

8.
The generation of supramolecularly organized structures from intermolecular interaction motivated us to fabricate new miscible nanoblends of polymethylmethacrylate (PMMA) and aramid. The polyamide, prepared through the condensation of 1,5‐diaminonaphthalene and 1,4‐phenylenediamine with isopthaloyl chloride, was incorporated into PMMA matrix to produce completely miscible nanostructured blends via physical interlocking. The influence of polymer–polymer interaction on the macroscopic properties of blends were studied using mechanical testing, thermogravimetric analysis, differential scanning calorimetry, and scanning electron microscopy. Ample adhesion between the blend components revealed higher tensile strength in the range 51–58 MPa. The physical interaction of PMMA with varying aramid content altered blend morphology significantly, i.e. from ellipsoidal to circular realms having well‐defined boundaries and knitted nanofibril network. Blends with 10–70 wt% aramid, thus, possessed exclusive patterns owing to nanolevel compatibility between two phases. Differential scanning calorimetry results also designated exclusively miscible blends with glass transition between 67–81°C, lower than that of pristine polymers. Ten percent gravimetric loss temperature (T10) increased from 465°C to 531°C with increasing aramid content from 10 to 70 wt%. Novel nanoblends holding spherical/cylindrical supramolecular arrangement, easy processing, and thermal and mechanical integrity can be potentially favorable in many industrial applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Novel blends were prepared from biobased poly(trimethylene terephthalate) (PTT) and poly(butylene adipate‐co‐terephthalate) (PBAT) using a twin screw extrusion process as a function of different weight ratios. Thermal stability, mechanical, and interfacial properties of PTT/PBAT blends were investigated using a thermogravimetric analyzer and mechanical analyzer. Phase behavior and surface morphology of the blends were characterized using scanning electron microscopy. Interfacial bonding value of the PTT/PBAT blend was evaluated from the Pukanszky empirical relationship. Viscoelastic properties of PTT/PBAT blends were investigated using the dynamic mechanical analyzer. PTT/PBAT blend exhibited higher thermal stability than the neat PTT matrix. The entire blend showed better interfacial adhesion between the matrixes. Storage and loss modulus of the PTT/PBAT blend reduces with increasing PBAT content. PTT/PBAT blend exhibited higher impact energy than the neat PTT matrix, because of its flexible and amorphous nature of PBAT polymer and increasing toughness. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Ethylene‐vinyl alcohol copolymer (EVOH)/clay nanocomposites were prepared via dynamic melt blending. The effect of the processing parameters on blends containing two clay types in different amounts was examined. The blends were characterized with a Brabender plastograph and capillary rheometer, differential scanning calorimetry, dynamic mechanical thermal analysis (DMTA), X‐ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). XRD showed advanced EVOH intercalation within the galleries, whereas TEM images indicated exfoliation, thereby complementing the XRD data. A dilution process with EVOH and clay treatment in an ultrasonic bath before melt blending did not add to the intercalation level. Different trends were observed for the EVOHs containing two different clay treatments, one claimed to be treated for EVOH and the other for amine‐cured epoxy. They reflected the differences in the amounts of the strongly interacting polymer for the two nanocomposites. Thermal analysis showed that the melting temperature, crystallization temperature, and heat of fusion of the EVOH matrix sharply decreased with both increasing clay content and processing times. Significantly higher viscosity levels were obtained for the blends in comparison with those of the neat polymer. The DMTA spectra showed higher glass‐transition temperatures for the nanocomposites in comparison with those of the neat EVOH. However, at high clay loadings, the glass‐transition temperature remained constant, presumably because of an adverse plasticizing effect of the low moleculared mass onium ions treating the clays. The storage modulus improved when clay treated for EVOH was used, and it deteriorated when amine‐cured epoxy clay was incorporated, except for the sonicated clay. TGA results showed significant improvements in the blends' thermal stability in comparison with that of the neat EVOH, which, according to TEM, was greater for the intercalated structures rather than for exfoliated ones. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1741–1753, 2002  相似文献   

11.
The scanning electron microscopy method in combination with the selective etching technique for polymer blends have been used to evaluate interfacial interaction in natural rubber and low density polyethylene blends. The morphology of the polymer blends, studied under externally applied strain, has been investigated to understand the role of interface adhesion between natural rubber and polyethylene phases, for two separate crosslinking systems, i.e. sulphur and peroxide.

Externally induced strain which facilitates phase separation in sulphur cured blends by initiating cracks at the interface; peroxide curing prevents separating out of the polyethylene phase from the natural rubber matrix. In the latter case, induced stress is distributed predominantly by developing fine flaw paths in the rubber matrix.

The method which has been developed for natural rubber and polyethylene blend systems may be used to evaluate the degree of interfacial adhesion between the dispersed phase and the dispersion medium for other kinds of polymer-polymer, polymer-filler as well as polymer-fibre composites.  相似文献   


12.
We describe the successful mixing of polymer pairs and triplets that are normally incompatible to form blends that possess molecular‐level homogeneity. This is achieved by the simultaneous formation of crystalline inclusion compounds (ICs) between host cyclodextrins (CDs) and two or more guest polymers, followed by coalescing the included guest polymers from their common CD–ICs to form blends. Several such CD–IC fabricated blends, including both polymer1/polymer2 binary and polymer1/ polymer2/polymer3 ternary blends, are described and examined by means of X‐ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared spectroscopy, and solid‐state NMR to probe their levels of mixing. It is generally observed that homogeneous blends with a molecular‐level mixing of blend components is achieved, even when the blend components are normally immiscible by the usual solution and melt blending techniques. In addition, when block copolymers composed of inherently immiscible blocks are coalesced from their CD–ICs, significant suppression of their normal phase‐segregated morphologies generally occurs. Preliminary observations of the thermal and temporal stabilities of the CD–IC coalesced blends and block copolymers are reported, and CD–IC fabrication of polymer blends and reorganization of block copolymers are suggested as a potentially novel means to achieve a significant expansion of the range of useful polymer materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4207–4224, 2004  相似文献   

13.
熔融共混制备了不同组分比的聚乳酸(PLA)/乙烯-醋酸乙烯酯共聚物(EVA)共混物,采用扫描电子显微镜(SEM)、溶剂选择性蚀刻和旋转流变仪研究了共混物不相容的相形态及其黏弹响应.研究结果表明,PLA/EVA共混物为典型的热力学不相容体系,两基体组分间的界面张力约为2.2 mN/m;因此随组分比的不同,共混物表现出"海-岛"分散和双连续的不相容相形态;体系中EVA的相反转浓度约为50 wt%~60 wt%,这与黏性模型对相反点预测的结果一致;与双连续相形态的体系相比,乳液模型能够更好的描述具有"海-岛"分散形态的体系的线性黏弹响应,共混体系相对较宽的相反转区域主要源于两组分间较大的弹性比以及EVA自身的屈服行为.  相似文献   

14.
The properties of multiphase polymer blends are determined in part by the nature of the polymer‐polymer interface. The interfacial tension, γ, influences morphology development during melt mixing while interfacial thickness, λ, is related to the adhesion between the phases in the solid blend. A quantitative relation between the thermodynamic interaction energy and these interfacial properties was first proposed in the theory of Helfand and Tagami and has since been correlated with experimental measurements with varying degrees of success. This paper demonstrates that the theory and experiment can be unified for polymer pairs of some technological importance: copolymers of styrene and acrylonitrile (SAN) with poly (2, 6‐dimethyl‐1, 4‐phenylene oxide) (PPO) and with bisphenol‐A polycarbonate (PC). For each pair, the overall interaction energy was calculated using a mean‐field binary interaction model expressed in terms of the interactions between repeat unit pairs extracted from blend phase behavior. Predictions of γ and λ as a function of copolymer composition made by combining the binary interaction model with the Helfand‐Tagami theory compare favorably with experimental measurements.  相似文献   

15.
Blends of t-butylaminoethyl methacrylate grafted polyethylene (PE-g-tBAEMA) with methyl methacrylate-methacrylic acid copolymer (PMMA-MAA) and polymethyl methacrylate (PMMA) were prepared in a Banbury type batch mixer. The effects of component proportions and processing conditions on the melt flow index, morphology, impact, and tensile properties of the resulting polymer blends were investigated. The interfacial chemical reaction was studied using Fourier transform infrared (FTIR) technique. It was observed that the melt index of the blends was reduced with increasing melt processing temperature and mixing time, indicating the formation of PE-g-PMMA block copolymer. New IR bands at 1554, 1628, 1800, and 1019 cm?1 were observed only for PE-g-tBAEMA/PMMA-MAA, the reactive blends, but not for PE-g-tBAEMA/PMMA, the nonreactive blend. These IR bands were attributed to the amide, carboxylate anion and methacrylimide formation resulting from the chemical reaction between the secondary amine on the PE-g-tBAEMA/PMMA moiety and the carboxylic acid on PMMA-MAA segment. The morphology of the blends in various compositions was examined using scanning electron microscopy (SEM) and related to their mechanical properties. All of the blends have a domain structure whose morphology is strongly dependent on the concentration of the dispersed phase. Furthermore, the PE-g-tBAEMA/PMMA-MAA reactive blends were shown to have much finer morphology than the corresponding nonreactive blends. For the reactive polymer blends consisting of brittle particles dispersed in the ductile matrices, the PE-g-tBAEMA/PMMA-MAA, impact and tensile result higher than predicted by the additivity rule were observed. The toughening of polyethylene by PMMA was explained by a “cold-drawing” mechanism. The Young's modulus of the blends and the extent of interfacial adhesion were analyzed with Takayanagi and Sato-Furukawa's theories. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
In a previous paper the structure and the physical properties of melt mixed polyamide 66 (PA66)/polyamide 12 (PA12) blends characterized by different compositions have been investigated by means of morphological and physical analyses. A low amount of organically‐modified layered silicate (OMLS, 4 wt%) was introduced in order to evaluate its effect on blends structure and components miscibility. This paper completes the characterization of these materials investigating their thermal properties by means of standard and modulated differential scanning calorimetry (DSC, MDSC), dynamic‐mechanical analysis (DMA), and thermogravimetric analysis (TGA). The partial miscibility of PA66 and PA12, with phase separation depending on blend composition, has been confirmed by analyzing the glass transition temperature (Tg) dependence on composition as well as the existence of strong segmental interactions between polymer components. A compatibilizing action of OMLS has been observed because of a lowering of interfacial tension avoiding coalescence phenomena between particles during melt mixing process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A series of PET/R‐PP/PC blends was studied in a chemical modification involving reactive extrusion with a ricinyl‐2‐oxazoline maleinate. The interfacial reaction between blend components were studied by the differential scanning calorimetry (DSC) and the scanning electron microscopy (SEM). The static tensile and flexural properties, and impact resistance response of the blends were tested. The phase morphology of the blends was of interpenetrating network (IPN) type according to SEM results. The blends offer excellent mechanical properties and improved impact strength as an effect of chemical reactions on reactive extrusion, even if PET waste and low PC contents (below 20%) have been used.  相似文献   

18.
Two ionomers, ethylene-methacrylic acid copolymer ionized with sodium cation (EMA-Na) and zinc cation (EMA-Zn), were employed as impact modifiers to prepare blends with polyoxymethylene (POM) via a melt extrusion. A copolymer of methyl methacrylate-styrene-butadiene (MBS) used as a co-impact modifier was also incorporated into the blends. The mechanical properties, thermal properties, morphology, and rheology were studied. A moderate toughening was observed for POM/ionomer binary blends, which was attributable to the rubbery natural and good adhesion of the ionomers. EMA-Zn exhibited a much better toughening effect than EMA-Na because of its higher elasticity and stronger interaction with POM. The incorporation of the ionomers into POM/MBS blends resulted in an improvement of mechanical properties, which was attributable to the compatibilizing effect of ionomer on POM/MBS blending system. The observation of scanning electron microscopy demonstrated that the finer phase domains were caused by incorporation of ionomers, which, acting as a compatibilizer as well as an impact modifier, reduced the interfacial tension and improved the interfacial adhesion between the phases. Differential scanning calorimetry investigation indicated that the presence of ionomer in the blends disturbed the crystallization of POM and resulted in a decrease in the crystallinity of POM. The evaluation of melt flow index revealed an increase in viscosity of the blends by incorporation of the ionomers, which was caused the ionic interaction between POM and the ionomers.  相似文献   

19.
Motivated by the development of miscible nano-blends with supramolecularly organized structures, relying on intermolecular interactions, novel poly(methyl methacrylate) (PMMA)/aramid nano-blend system was designed. Aramid chains, obtained through the condensation of a mixture of 1,5-diaminonaphthalene and 1,3-phenylenediamine with terephthaloyl chloride, were incorporated in PMMA to form nano-structured blends via physical interlocking. Effect of polymer–polymer interactions on miscibility and macroscopic properties of blends were studied using tensile testing, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Tensile properties well indicated the mechanical compatibility resulting from good component cohesion via hydrogen bonding. DSC results also designated entirely miscible blends even at high aramid content. Morphological observations corroborated these findings as well, however, physical interaction of PMMA with varying aramid content efficiently altered blend morphology. Blends with 10, 20, 60 and 70 wt.% aramid possessed fine patterns owing to nano-level compatibility of two phases. Novel blends holding advanced properties can be potentially exploited to acquire exceptional performance in various technological applications such as nano-templates, nano-structured membranes, nano-devices, etc.  相似文献   

20.
The preparation, rheology, and mechanical properties of a family of blends composed of transition-metal neutralized sulfonated ethylene-propylene-diene elastomers (S-EPDM) and styrene-4 vinylpyridine copolymers (SVP) are described. These polymeric materials contain relatively low levels of interacting groups (≤ 10 mol%), which are, however, sufficient for forming an intermolecular complex. A distinguishing characteristic of these blends is that the rheology and mechanical properties are strongly influenced by a coordination-type bonding between the transition metal and the basic nitrogen unit. As a result, markedly improved and enhanced physical properties are observed, especially when the stoichometric ratio of the interacting moieties are approached (SO/N = 1/1). This enhancement in properties is clearly exhibited in melt viscosity data, dynamic mechanical data, and thermal data. The blend morphology is also altered by complex formation, as is observed in scanning electron microscopy of the blends from which one of the ingredients was selectively extracted. At the stoichometric ratio, the blend of the olefinic elastomeric ionomer and the styrenic thermoplastic copolymer approaches a single-phase system. Such blends are otherwise completely immiscible when the coordination-type interacting groups are absent from either of the individual components. Accordingly, it was observed that nontransition-type (Na, Mg) counterions have only a marginal effect on the compatibility of these blends, as is the case in the completely unfunctionized blend components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号