首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 939 毫秒
1.
Temperature and frequency dependence of dielectric constant (ε′) and dielectric loss (ε″) are studied in glassy Se70Te30 and Se70Te28Zn2. The measurements have been made in the frequency range (8-500 kHz) and in the temperature range 300 to 350 K. An analysis of the dielectric loss data shows that the Guintini's theory of dielectric dispersion based on two-electron hopping over a potential barrier is applicable in the present case.No dielectric loss peak is observed in glassy Se70Te30. However, such loss peaks exist in the glassy Se70Te28Zn2 in the above frequency and temperature range. The Cole-Cole diagrams have been used to determine some parameters such as the distribution parameter (α), the macroscopic relaxation time (τ0), the molecular relaxation time (τ) and the Gibb's free energy for relaxation (ΔF).  相似文献   

2.
AC conductivity and dielectric properties of tungsten trioxide (WO3) in a pellet form were studied in the frequency range from 42 Hz to 5 MHz with a variation of temperature in the range from 303 K to 463 K. AC conductivity, σac(ω) was found to be a function of ωs where ω is the angular frequency and s is the frequency exponent. The values of s were found to be less than unity and decrease with increasing temperature, which supports the correlated barrier hopping mechanism (CBH) as the dominant mechanism for the conduction in WO3. The dielectric constant (ε′) and dielectric loss (ε″) were measured. The Cole–Cole diagram determined complex impedance for different temperatures.  相似文献   

3.
Se75Te25−xGax (x=0, 5, 10 and 15 at wt%) chalcogenide compositions were prepared by the well known melt quenching technique. Thin films with different thicknesses in the range (185–630 nm) of the obtained compositions were deposited by thermal evaporation technique. X-ray diffraction patterns indicate that the amorphous nature of the obtained films. The ac conductivity and the dielectric properties of the studied films have been investigated in the frequency range (102–105 Hz) and in the temperature range (293–333 K). The ac conductivity was found to obey the power low ωs where s≤1 independent of film thickness. The temperature dependence of both ac conductivity and the exponent s can be well interpreted by the correlated barrier hopping (CBH) model. The experimental results of the dielectric constant ε1 and dielectric loss ε2 are frequency and temperature dependent. The maximum barrier height Wm calculated from the results of the dielectric loss according to the Guintini equation, and agrees with that proposed by the theory of hopping of charge carriers over a potential barrier as suggested by Elliott for chalcogenide glasses. The density of localized state was estimated for the studied film compositions. The variation of the studied properties with Ga content was also investigated. The correlation between the ac conduction and the dielectric properties were verified.  相似文献   

4.
The a.c. conductivity of a-Se80Te20 and a-Se80Te10M10 (M = Cd, In, Sb) alloys has been investigated as a function of temperature in the range from 280 to 330 K and frequency in the range from 102 to 104 Hz. The experimental results indicate that a.c. conductivity σac is proportional to ωs where s < 1 and decreases with increasing temperature. The results obtained are discussed in terms of the correlated barrier hopping (CBH) model. An agreement between experimental and theoretical results suggests that the a.c. conductivity behavior of a-Se80Te20 and a-Se80Te10M10 (M = Cd, In, Sb) system can be successfully explained by CBH model. The contribution of single polaron and bipolaron hopping to a.c. conductivity in present alloys is also studied.  相似文献   

5.
The frequency dependence of the AC conductivity of (NH4)3H(SO4)1.42(SeO4)0.58 (NHSSe) has been presented in the temperature range (299-393 K). The conductivity data has been analysed in terms of two theoretical models: hopping over a potential barrier model and quantum-tunnelling model. Values of the exponent s, decrease from 1.08 to 0.91 with increasing temperature and the experimental data revel that the hopping model is the rate determining mechanism.  相似文献   

6.
A novel set of glasses of the type (B2O3)0.10-(P2O5)0.40-(CuO)0.50−x-(MoO3)x, 0.05≤x≥0.50, have been investigated for dielectric properties in the frequency range 100 Hz-100 kHz and temperature range 300-575 K. From the total conductivity derived from the dielectric spectrum the frequency exponent, s, and dc and ac components of the conductivity were determined. The temperature dependence of dc and ac conductivities at different frequencies was analyzed using Mott's small polaron hopping model, and the high temperature activation energies have been estimated and discussed. The observed initial decrease in conductivity (ac and dc) and increase in activation energy with the addition of MoO3 have been understood to be due to the hindrance offered by the Mo+ ions to the electronic motions. The observed peak-like behavior in conductivity (dip-like behavior in activation energy) in the composition range 0.20-0.50 mol fractions of MoO3 may be due to mixed transition effect occurring in the present glasses. The temperature dependence of frequency exponent, s, has been analyzed using different theoretical models. It is for the first time that the mixed transition metal ion (TMI) doped borophosphate glasses have been investigated for dielectric properties and conductivity over wide temperature and frequency ranges and the data have been subjected to a thorough analysis.  相似文献   

7.
AC conductivity and dielectric studies on vanadium phosphate glasses doped with lithium have been carried out in the frequency range 0.2-100 kHz and temperature range 290-493 K. The frequency dependence of the conductivity at higher frequencies in glasses obeys a power relationship, σac=s. The obtained values of the power s lie in the range 0.5≤s≤1 for both undoped and doped with low lithium content which confirms the electron hopping between V4+ and V5+ ions. For doped glasses with high lithium content, the values of s≤0.5 which confirm the domination of ionic conductivity. The study of frequency dependence of both dielectric constant and dielectric loss showed a decrease with increasing frequency while they increase with increasing temperature. The results have been explained on the basis of frequency assistance of electron hopping besides the ionic polarization of the glasses. The bulk conductivity increases with increasing temperature whereas decreases with increasing lithium content which means a reduction of the V5+.  相似文献   

8.
The electrical transport properties and dielectric relaxation of Au/zinc phthalocyanine, ZnPC/Au devices have been investigated. The DC thermal activation energy at temperature region 400-500 K is 0.78 eV. The dominant conduction mechanisms in the device are ohmic conduction below 1 V and space charge limited conduction dominated by exponential trap distribution in potentials >1 V. Some parameters, such as concentration of thermally generated holes in valence band, the trap concentration per unit energy range at the valence band edge, the total concentration of traps and the temperature parameter characterizing the exponential trap distribution and their relation with temperatures have been determined. The AC electrical conductivity, σac, as a function of temperature and frequency has been investigated. It showed a frequency and temperature dependence of AC conductivity for films in the temperature range 300-400 K. The films conductivity in the temperature range 400-435 K increased with increasing temperature and it shows no response for frequency change. The dominant conduction mechanism is the correlated barrier hopping. The temperature and frequency dependence of real and imaginary dielectric constants and loss tangent were investigated.  相似文献   

9.
A series of Zinc Oxide pellets sintered at different temperatures was studied by means of dielectric spectroscopy in the wide frequency range of 1–106 Hz and temperature interval from −100 °C to 30 °C. Electrical conductivity was analysed using Jonsher's universal power law, and the values of s were found to decrease with the increase in temperature, which agrees well with the correlation barrier hopping (CBH) model.  相似文献   

10.
The a.c. hopping conductivity is investigated in VO2 between 25 kHz and 109 Hz as a function of temperature. The ωs law with 0.7 < s < 1 is observed over a large range of frequencies, which is interpreted in terms of electron hopping among a wide distribution of localized levels. A detailed analysis of the results leads to the conclusion that two hopping processes are involved: a low frequency process, thermally excited with an activation energy of 30 meV, with a cutoff frequency of about 108 Hz, and a high frequency process, extending to very high frequencies and nearly temperature independent.  相似文献   

11.
PAni nanofibers synthesized by interfacial polymerization were reinforced in the PMMA matrix in different weight ratios. Randomly oriented polyaniline nanofibers were observed in the TEM image with diameter ranging from 20 to 30 nm. The SEM revealed the microstructure of the fiber reinforced composites showing better connectivity. The XRD spectra of the composites showed peaks at 2θ=17.05°, 20.3°, 27.15° and 30.05° that were indexed in a pseudo-orthorhombic unit cell. The dielectric constant measured over a frequency range of 42 Hz-1 MHz and in the temperature range of 303-373 K showed dependence upon frequency, temperature and concentration of the conducting nanofibers in the composites. The ac conductivity (σac) was interpreted as a power law of frequency. The frequency exponent s was found to lie in the range from 0.4 to 0.65 and decreased with the increase in temperature, which suggested that correlated barrier hopping (CBH) was the dominant charge transport mechanism. Existence of polarons as major charge carriers was confirmed by the low values of polaron binding energy (WM). Decrease in the values of density of states N(EF) with the increase in PAni nanofiber concentration indicated increased delocalization of electronic states in the band gap causing the increase in ac conductivity.  相似文献   

12.
Stoichiometric bulk ingot material of the quaternary CdGaInSe4 was prepared by direct fusion of the constituent elements in vacuum-sealed silica tubes. Nearly stoichiometric films could be deposited by thermal evaporation of the ingot material in 10−3 Pa vacuum at a deposition rate 1.5 nm/s. Crystal structure investigation was carried out using X-ray diffractometry and transmission electron diffraction. Elemental composition was determined by means of energy-dispersive X-ray spectrometry. CdGaInSe4 possesses a tetragonal defective chalcopyrite structure (space group ) with lattice parameters a=0.5665 nm and c=1.1221 nm. All the films exhibited n-type conduction and ohmic behaviour with metallic films of Au, Cd, In, Ag and Sb. However, in the case of Al a nonlinear behaviour occurs. Analysis of the temperature dependence of the dark conductivity in the range 130-470 K has revealed three operating conduction mechanisms; a variable range hopping conduction process dominating at low temperatures below 270 K, followed by a transport of the charge carriers across intercrystalline barriers and grain boundaries in the temperature range 270-353 K, and finally an extrinsic conduction above 353 K.  相似文献   

13.
Polycrystalline sample with (Na0.5Bi0.5)ZrO3 (NBZ) stoichiometry was prepared using a high-temperature solid-state reaction technique. X-ray diffraction (XRD) analyses indicate the formation of a single-phase perovskite-type orthorhombic structure. AC impedance plot is used as tool to analyse the electrical behaviour of the sample as a function of temperature at different frequency. The AC impedance studies revealed the presence of grain boundary effect and evidence of a negative temperature coefficient of resistance (NTCR) character. Pseudo Cole-Cole and complex electric modulus analyses indicated non-Debye-type dielectric relaxation. The AC conductivity obeys the universal power law. The pair approximation type correlated barrier hopping (CBH) model explains the universal behaviour of the s exponent. The apparent activation energy to the conduction process and minimum hopping distance are discussed.  相似文献   

14.
The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin–spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325–376 K and the frequency range from 10−2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.  相似文献   

15.
Single-phase structure of CuFe2O4 and Cu1−xZnxGa0.3Fe1.7O4; with (0.0≤x≤0.5) are synthesized. Electrical conductivity measurements as a function of temperature are carried out in the frequency range (102-105 Hz) for the prepared samples. The obtained results of these materials reveal a metallic-like behavior in the low range of frequency. At high frequency regime metallic-to-semiconductor transition has been observed as the compositional parameter x increases. Metallic-like behavior is accompanied with samples having low Zn content, where cation-cation [Cu-Cu] interaction is major at the octahedral B-sites and semiconductor behavior is associated with compounds having high Zn content, where cation-anion-cation [Fe-O-Fe] interaction is most predominant at B-sites in these spinel oxides. All studied compositions exhibit a transition with change in the slope of conductivity versus temperature curve. This transition temperature is found to decrease linearly with increasing Zn concentration x. The relation of the universal exponent s with temperature indicates the presence of two hopping conduction mechanisms; the correlated barrier hopping CBH at low Zn content x≤0.2 and small polaron (SP) at Zn content x≥0.3.  相似文献   

16.
The present paper reports the effect of Pb impurity (low ∼2 at% and high ∼10 at%) on the ac conductivity (σac) of a-Ge20Se80 glass. Frequency-dependent ac conductance and capacitance of the samples over a frequency range ∼100 Hz to 50 kHz have been taken in the temperature range ∼268 to 358 K. At frequency 2 kHz and temperature 298 K, the value of σac increases at low as well as at higher concentration of Pb. σac is proportional to ωs for undoped and doped samples. The value of frequency exponent (s) decreases as the temperature increases. The static permittivity (εs) increases at both Pb concentrations. These results have been explained on the basis of some structural changes at low and higher concentration of Pb impurity.  相似文献   

17.
Dielectric properties, viz. dielectric constant ε′, loss tan δ and a.c conductivity σac (over a wide range of frequency and temperature) and dielectric breakdown strength of PbO-Sb2O3-As2O3 glasses doped with V2O5 (ranging from 0 to 0.5 mol%) are studied. Analysis of these results, based on optical absorption and ESR spectra, indicates that the insulating strength of the glasses is comparatively high when the concentration of V2O5 is about 0.3 mol% in the glass matrix.  相似文献   

18.
The a.c. conductivity of semiconducting cis-cisoid polyphenylacetylene (PPA) pellets has been studied at temperatures between 230 and 290 K and frequencies, ?, from 37 to 105 Hz. The a.c. conductivity (σa.c.) is found to be strongly temperature dependent. σa.c. is proportional to ?s with s varying from 0.45 to 0.75 as temperature is raised from 230 to 290 K. Both frequency dispersion and strong temperature dependence of σa.c. are best explained by the mechanism of hopping conduction in the band-tails.  相似文献   

19.
A comparison of structure and dielectric properties of TlSbS2 thin films, deposited in different thicknesses (400–4100 Å) by thermal evaporation of TlSbS2 crystals that were grown by the Stockbarger–Bridgman technique and the bulk material properties of TlSbS2 are presented. Dielectric constant ε 1 and dielectric loss ε 2 have been calculated by measuring capacitance and dielectric loss factor in the frequency range 20 Hz–10 KHz and in the temperature range 273–433 K. It is observed that at 1 kHz frequency and 293 K temperature the dielectric constant of TlSbS2 thin films is ε 1=1.8–6 and the dielectric loss of TlSbS2 thin films is ε 2=0.5–3 depending on film thickness. In the given intervals, both of dielectric constant and dielectric loss decrease with frequency, but increase with temperature. The maximum barrier height W m is calculated from the dielectric measurements. The values of W m for TlSbS2 films and bulk are obtained as 0.56 eV and 0.62 eV at room temperature, respectively. The obtained values agree with those proposed by the theory of hopping over the potential barrier. The temperature variation of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping model since it obeys the ω s law with a temperature dependent s (s<1) and going down as the temperature is increased. The temperature coefficient of capacitance (TCC) and permittivity (TCP) are evaluated for both thin films and bulk material of TlSbS2.  相似文献   

20.
Measurements of the dc and ac conductivity were made for polycrystalline CdSexTe1−x (0x0.4) at various frequencies (0.1–100 kHz) and at various temperatures (293–413 K). The temperature dependence of the dc conductivity was measured in the temperature range (293–413 K). It was found that the obtained dc activation energy for the investigated compositions decrease with the increase of Se content. The ac conductivity is found to be frequency and temperature dependent and obeys the s law, where s decreases with the increase of temperature. The ac conductivity of these compositions are explained on the basis of the correlated barrier hopping model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号