首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
On bipartite zero-divisor graphs   总被引:1,自引:0,他引:1  
A (finite or infinite) complete bipartite graph together with some end vertices all adjacent to a common vertex is called a complete bipartite graph with a horn. For any bipartite graph G, we show that G is the graph of a commutative semigroup with 0 if and only if it is one of the following graphs: star graph, two-star graph, complete bipartite graph, complete bipartite graph with a horn. We also prove that a zero-divisor graph is bipartite if and only if it contains no triangles. In addition, we give all corresponding zero-divisor semigroups of a class of complete bipartite graphs with a horn and determine which complete r-partite graphs with a horn have a corresponding semigroup for r≥3.  相似文献   

3.
The zero-divisor graph of a commutative semigroup with zero is the graph whose vertices are the nonzero zero-divisors of the semigroup, with two distinct vertices adjacent if the product of the corresponding elements is zero. New criteria to identify zero-divisor graphs are derived using both graph-theoretic and algebraic methods. We find the lowest bound on the number of edges necessary to guarantee a graph is a zero-divisor graph. In addition, the removal or addition of vertices to a zero-divisor graph is investigated by using equivalence relations and quotient sets. We also prove necessary and sufficient conditions for determining when regular graphs and complete graphs with more than two triangles attached are zero-divisor graphs. Lastly, we classify several graph structures that satisfy all known necessary conditions but are not zero-divisor graphs.  相似文献   

4.
Tongsuo Wu  Dancheng Lu   《Discrete Mathematics》2008,308(22):5122-5135
In this paper we study sub-semigroups of a finite or an infinite zero-divisor semigroup S determined by properties of the zero-divisor graph Γ(S). We use these sub-semigroups to study the correspondence between zero-divisor semigroups and zero-divisor graphs. In particular, we discover a class of sub-semigroups of reduced semigroups and we study properties of sub-semigroups of finite or infinite semilattices with the least element. As an application, we provide a characterization of the graphs which are zero-divisor graphs of Boolean rings. We also study how local property of Γ(S) affects global property of the semigroup S, and we discover some interesting applications. In particular, we find that no finite or infinite two-star graph has a corresponding nil semigroup.  相似文献   

5.
Tongsuo Wu  Dancheng Lu 《代数通讯》2013,41(8):3043-3052
In this article, we study commutative zero-divisor semigroups determined by graphs. We prove that for all n ≥ 4, the complete graph K n together with two end vertices has a unique corresponding zero-divisor semigroup, while the complete graph K n together with three end vertices has no corresponding semigroups. We determine all the twenty zero-divisor semigroups whose zero-divisor graphs are the complete graph K 3 together with an end vertex.  相似文献   

6.
7.
8.
Let R be a commutative ring with 1 ≠ 0, G be a nontrivial finite group, and let Z(R) be the set of zero divisors of R. The zero-divisor graph of R is defined as the graph Γ(R) whose vertex set is Z(R)* = Z(R)?{0} and two distinct vertices a and b are adjacent if and only if ab = 0. In this paper, we investigate the interplay between the ring-theoretic properties of group rings RG and the graph-theoretic properties of Γ(RG). We characterize finite commutative group rings RG for which either diam(Γ(RG)) ≤2 or gr(Γ(RG)) ≥4. Also, we investigate the isomorphism problem for zero-divisor graphs of group rings. First, we show that the rank and the cardinality of a finite abelian p-group are determined by the zero-divisor graph of its modular group ring. With the notion of zero-divisor graphs extended to noncommutative rings, it is also shown that two finite semisimple group rings are isomorphic if and only if their zero-divisor graphs are isomorphic. Finally, we show that finite noncommutative reversible group rings are determined by their zero-divisor graphs.  相似文献   

9.
The zero-divisor graph of a commutative ring R is the graph whose vertices consist of the nonzero zero-divisors of R such that distinct vertices x and y are adjacent if and only if xy=0. In this paper, a decomposition theorem is provided to describe weakly central-vertex complete graphs of radius 1. This characterization is then applied to the class of zero-divisor graphs of commutative rings. For finite commutative rings whose zero-divisor graphs are not isomorphic to that of Z4[X]/(X2), it is shown that weak central-vertex completeness is equivalent to the annihilator condition. Furthermore, a schema for describing zero-divisor graphs of radius 1 is provided.  相似文献   

10.
Let R be a commutative ring and Г(R) be its zero-divisor graph.We com-pletely determine the structure of all finite commutative rings whose zero-divisor graphs have clique number one,two,or three.Furthermore,if R≌ Ri × R2 × … Rn (each Ri is local for i =1,2,3,…,n),we also give algebraic characterizations of the ring R when the clique number of r(R) is four.  相似文献   

11.
We consider zero-divisor graphs of idealizations of commutative rings. Specifically, we look at the preservation, or lack thereof, of the diameter and girth of the zero-divisor graph of a ring when extending to idealizations of the ring.  相似文献   

12.
For a finite bounded lattice , we associate a zero-divisor graph G() which is a natural generalization of the concept of zero-divisor graph for a Boolean algebra. Also, we study the interplay of lattice-theoretic properties of with graph-theoretic properties of G().  相似文献   

13.
Ivana Božić 《代数通讯》2013,41(4):1186-1192
We investigate the properties of (directed) zero-divisor graphs of matrix rings. Then we use these results to discuss the relation between the diameter of the zero-divisor graph of a commutative ring R and that of the matrix ring M n (R).  相似文献   

14.
Shane P. Redmond 《代数通讯》2013,41(8):2749-2756
This article continues to examine cut vertices in the zero-divisor graphs of commutative rings with 1. The main result is that, with only seven known exceptions, the zero-divisor graph of a commutative ring has a cut vertex if and only if the graph has a degree one vertex. This naturally leads to an examination of the degree one vertices of zero-divisor graphs.  相似文献   

15.
We define phylogenetic projective toric model of a trivalent graph as a generalization of a binary symmetric model of a trivalent phylogenetic tree. Generators of the projective coordinate ring of the models of graphs with one cycle are explicitly described. The phylogenetic models of graphs with the same topological invariants are deformation-equivalent and share the same Hilbert function. We also provide an algorithm to compute the Hilbert function.  相似文献   

16.
Given an initial graph G, one may apply a rule R to G which replaces certain vertices of G with other graphs called replacement graphs to obtain a new graph R(G). By iterating this procedure, a sequence of graphs {Rn(G)} is obtained. When each graph in this sequence is normalized to have diameter one, the resulting sequence may converge in the Gromov-Hausdorff metric. In this paper, we compute the topological dimension of limit spaces of normalized sequences of iterated vertex replacements involving more than one replacement graph. We also give examples of vertex replacement rules that yield fractals.  相似文献   

17.
Let Pn be a path graph with n vertices, and let Fn = Pn ∪ {c}, where c is adjacent to all vertices of Pn. The resulting graph is called a fan-shaped graph. The corresponding zero-divisor semigroups have been completely determined by Tang et al. for n = 2, 3, 4 and by Wu et al. for n ≥ 6, respectively. In this paper, we study the case for n = 5, and give all the corresponding zero-divisor semigroups of Fn.  相似文献   

18.
We give formulae for the first homology of the n-braid group and the pure 2-braid group over a finite graph in terms of graph-theoretic invariants. As immediate consequences, a graph is planar if and only if the first homology of the n-braid group over the graph is torsion-free and the conjectures about the first homology of the pure 2-braid groups over graphs in Farber and Hanbury (arXiv:1005.2300 [math.AT]) can be verified. We discover more characteristics of graph braid groups: the n-braid group over a planar graph and the pure 2-braid group over any graph have a presentation whose relators are words of commutators, and the 2-braid group and the pure 2-braid group over a planar graph have a presentation whose relators are commutators. The latter was a conjecture in Farley and Sabalka (J. Pure Appl. Algebra, 2012) and so we propose a similar conjecture for higher braid indices.  相似文献   

19.
In this paper we introduce a theory of edge shelling of graphs. Whereas the standard notion of shelling a simplicial complex involves a sequential removal of maximal simplexes, edge shelling involves a sequential removal of the edges of a graph. A necessary and sufficient condition for edge shellability is given in the case of 3-colored graphs, and it is conjectured that the result holds in general. Questions about shelling, and the dual notion of closure, are motivated by topological problems. The connection between graph theory and topology is by way of a complex ΔG associated with a graph G. In particular, every closed 2- or 3-manifold can be realized in this way. If ΔG is shellable, then G is edge shellable, but not conversely. Nevertheless, the condition that G is edge shellable is strong enough to imply that a manifold ΔG must be a sphere. This leads to completely graph-theoretic generalizations of the classical Poincaré Conjecture.  相似文献   

20.
We study Beck-like coloring of partially ordered sets (posets) with a least element 0. To any poset P with 0 we assign a graph (called a zero-divisor graph) whose vertices are labelled by the elements of P with two vertices x,y adjacent if 0 is the only element lying below x and y. We prove that for such graphs, the chromatic number and the clique number coincide. Also, we give a condition under which posets are not finitely colorable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号