首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The shallow buried tunnel is frequently encountered in underground engineering. The dynamic response of a tunnel under incident wave is of great importance for guiding the safety design in tunnel engineering. In this paper, a model for predicting the dynamic response of a shallow buried tunnel in saturated soil is proposed based on nonlocal Biot theory. The analytical solution is obtained using the wave function expansion method. To consider practical engineering problem, a set of material parameters for saturated soil and tunnel lining are selected for the numerical analysis. The influence of nonlocal parameter, which is introduced in nonlocal Biot theory to consider the pore size effect and pore dynamic effect, on dynamic stress concentrate factor in the lining is investigated in detail. The dynamic responses affected by the other factors, such as incident wave angle, frequency of incident wave and buried depth of the tunnel, have also been implemented. The dynamic stress concentrate factor distributed in the lining is also shown and the position and orientation appearing maximum concentrate factor can be easily determined from the contour plot, which can provide a visual guideline for safety design of a tunnel.  相似文献   

2.
提出了横观各向同性岩体中的非圆形水工衬砌隧洞在各向同性衬砌与岩体处于光滑接触条件下的解析方法.基于复变函数理论,通过建立两种介质在光滑接触边界上的力和位移连续关系以及衬砌自由边界的水压力边界条件,考虑衬砌支护滞后效应并使用幂级数解法获得解析解.针对倾斜结构面岩体中的马蹄形水工衬砌隧洞,使用解析和数值方法验证了解析解的正确性,获得了岩体各向异性和不同洞内水压力对衬砌和围岩接触边界,以及衬砌自由边界上应力和位移分布的影响规律.  相似文献   

3.
In this paper, the nonlinear behavior of a one-dimensional model of the disc brake pad is examined. The contact normal force between the disc brake pad lining and rotor is represented by a second order polynomial of the relative displacement between the two elastic bodies. The frictional force due to the sliding motion of the rotor against the stationary pad is modeled as a distributed follower-type axial load with time-dependent terms. By Galerkin discretization, the equation governing the transverse motion of the beam model is reduced to a set of extended Duffing system with quasi-periodically modulated excitations. Retaining the first two vibration modes in the governing equations, frequency response curves are obtained by applying a two-dimensional spectral balance method. For the first time, it is predicted that nonlinearity resulting from the contact mechanics between the disc brake pad lining and rotor can lead to a possible irregular motion (chaotic vibration) of the pad in the neighborhood of simple and parametric resonance. This chaotic behavior is identified and quantitatively measured by examining the Poincaré maps, Fourier spectra, and Lyapunov exponents. It is also found that these chaotic motions emerge as a result of successive Hopf bifurcations characterized by the torus breakdown and torus doubling routes as the excitation frequency varies. Various aspects of the numerical difficulties in the solution of the nonlinear equations are also discussed.  相似文献   

4.
The problem of compression of a unidirectional layer and shear of a polymer interlayer during winding of rings is considered. The equations determining the dependence of the layer thickness and stresses on the parameters entering into the power flow law for a prepreg and polymer matrix and on the basic parameters of the winding process—the initial tension of the prepreg, its placement rate, and the radius of a mandrel—are derived. The ring thickness measurements obtained at various temperatures and initial tension forces of plies confirm the adequacy of the model offered. It is found that the viscous properties of the prepreg and matrix upon winding affect the relative change in the layer thickness to a greater extent than the stresses in these layers. With increase in temperature and tension force upon winding, the effect of viscous deformations of the prepreg and matrix increases. A decrease in viscosity and an increase in the tension force of the tape lead to a higher strength of the ring in tension and interlaminar shear; however, the growing percolation of the polymer melt leads to a greater inhomogeneity of the structure of the composite in the ring and to a lower reinforcing effect of the factors mentioned. Presented at the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 3, pp. 419–428, 2000.  相似文献   

5.
We consider the inverse problem consisting of determining the unknown shape of an elastic imperfection contained in a thin plate from the condition of equal strength in the stressed state along the phase interface surface. It is shown that such a state is attained in the case of an elliptic imperfection whose shape depends on the values of the applied moments and the mechanical properties of the component phases. It is established that for the geometry found for the imperfection the sum of the moments is constant and the second invariant of the deviator of the stress tensor is superharmonic over the entire plate. Numerical computations are carried out. In special cases the results obtained coincide with known data. One figure. Bibliography: 5 titles. Translated fromTeoreticheskaya i Prikladnaya Mekhanika, No. 22, pp. 34–40, 1991.  相似文献   

6.
A new variational inequality-based formulation is presented for the large deformation analysis of frictional contact in shell structures. This formulation is based on a seven-parameter continuum shell model which accounts for the normal stress and strain through the shell thickness and accommodates double-sided shell contact. The kinematic contact conditions are expressed accurately in terms of the physical contacting surfaces of the shell. Furthermore, Lagrange multipliers are used to ensure that the kinematic contact constraints are accurately satisfied and that the solution is free from user-defined parameters. Large deformations and rotations are accounted for by invoking the Piola–Kirchhoff stress and the Green–Lagrange strain measures. Three examples involving a strip friction test, ring contact and sheet compression tests are used to verify the developed formulations and algorithms, and test various aspects of the solution technique. Photoelastic analysis of the ring compression example is performed for experimental verification.  相似文献   

7.
Let a multiobjective linear programming problem and any efficient solution be given. Tolerance analysis aims to compute interval tolerances for (possibly all) objective function coefficients such that the efficient solution remains efficient for any perturbation of the coefficients within the computed intervals. The known methods either yield tolerances that are not the maximal possible ones, or they consider perturbations of weights of the weighted sum scalarization only. We focus directly on perturbations of the objective function coefficients, which makes the approach independent on a scalarization technique used. In this paper, we propose a method for calculating the supremal tolerance (the maximal one need not exist). The main disadvantage of the method is the exponential running time in the worst case. Nevertheless, we show that the problem of determining the maximal/supremal tolerance is NP-hard, so an efficient (polynomial time) procedure is not likely to exist. We illustrate our approach on examples and present an application in transportation problems. Since the maximal tolerance may be small, we extend the notion to individual lower and upper tolerances for each objective function coefficient. An algorithm for computing maximal individual tolerances is proposed.  相似文献   

8.
A structure in the form of two coaxial cylindrical shells with different radii, joined by a stiffening ring either rigidly or by hinges, is considered. Starting out from improved equations of general form constructed earlier, a linearized contact problem is formulated that enables all possible classical and non-classical forms of loss of stability to be investigated in the case of axisymmetric forms of loading of the structure. The initial relations of the problem are transformed to an equivalent system of integro-algebraic equations containing integral Volterra-type operators by integrating along the longitudinal coordinate and representing the two-dimensional and one-dimensional required unknowns introduced into the treatment in the form of the sum of trigonometric functions in the circumferential coordinate that, in changing into a perturbed state, allows the possibility of the shell deforming in antiphase forms. A numerical algorithm for constructing solutions of the resulting equations is proposed, based on the method of finite sums, that enables all the boundary conditions of the problem and the conditions for the joining of the shells with the stiffening ring to be satisfied exactly. Retaining and discarding parametric terms in the relations for the shells, the stability of a structure of the class considered is investigated in the case when an external pressure acts on the stiffening ring and, also, in the case of its axial tension during which the stiffening ring is found to be under wrench deformation conditions and, in a shell of larger diameter, subcritical circumferential compressive stresses are formed.  相似文献   

9.
10.
研究了属性权重范围已知,方案主观偏好值为语言变量,决策信息为不确定语言决策矩阵的多属性决策问题.在给出不确定语言变量转换为二元联系数的公式以及二元联系数距离公式的基础上,将方案主观偏好语言评价值转换为二元联系数,将不确定语言决策矩阵转换为二元联系数决策矩阵,从而得到方案的二元联系数综合属性值,通过最小化方案的二元联系数综合属性值和主观偏好值之间距离,建立多目标优化模型,并将其转换为一个单目标规划模型计算出属性权重.然后,通过对方案的二元联系数综合属性值进行不确定性分析,得到各方案的排序总数,利用排序总数对方案进行排序择优.应用实例表明该决策方法可行有效.  相似文献   

11.
This paper investigates the imperfection sensitivity of thermal post-buckling behaviour of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) beams subjected to in-plane temperature variation. The material properties of FG-CNTRCs are assumed to be graded in the thickness direction and temperature-dependent. A generic imperfection function is used to model various possible imperfections, including sine type, global and localized imperfections. The governing equations are derived based on the first-order shear deformation beam theory and von-Kármán geometric nonlinearity. The differential quadrature method in conjunction with modified Newton–Raphson technique is employed to determine the thermal post-buckling equilibrium path of imperfect FG-CNTRC beams. Thermal buckling is treated as a subset problem. A parametric study is conducted to examine the effects of imperfection mode, half-wave number, location and amplitude on their thermal post-buckling performance. The influences of distribution pattern and volume fraction of carbon nanotubes, boundary conditions and slenderness ratio are discussed as well. The results indicate that the thermal post-buckling is highly sensitive to the imperfection mode, half-wave number, location as well as its amplitude. It is also shown that the clamped-clamped FG-CNTRC beam is more sensitive to imperfections than those with other boundary conditions whereas other parameters do not substantially affect the imperfection sensitivity of thermal post-buckling behaviour.  相似文献   

12.
In this article the “most unfavorable” shape of initial geometric imperfection profile for laminated cylindrical shell panel is obtained analytically by minimizing the limit point load. The partial differential equations governing the shell stability problem are reduced to a set of non-linear algebraic equations using Galerkin's technique. The non-linear equilibrium path is traced by employing Newton–Raphson method in conjunction with the Riks approach. A double Fourier series is used to represent the initial geometric imperfection profile for the cylindrical shell panel. The optimum values of these Fourier coefficients are determined by minimizing the limit point load using genetic algorithm. The results are determined for simply supported composite cylindrical shell panel. Numerical results show that more number of terms is needed in Fourier series representation to obtain the “worst” geometric imperfection profile which gives lower limit load compared to single term representation of imperfection. We have incorporated constraints on the shape of imperfection to avoid unrealistic limit point loads (due to imperfection shape) as we have assumed that the imperfection is due to machining/manufactuting.  相似文献   

13.
The methods of dealing with some key problems in analyzing a rotary forging process with a finite element method are given. The presented mechanical model of the finite element analysis is in accordance with the actual conditions of the rotary forging process. A three-dimensional rigid–plastic finite element analysis code is developed in FORTRAN language and used to analyze the rotary forging process of a ring workpiece. Velocity fields and stress–strain fields of both contact and non-contact zones of the ring workpiece in the rotary forging are obtained. The deformation mechanism and metal flow laws of the contact zone surface of the ring workpiece in the rotary forging process are revealed. The pressure distributions of the contact surface along the radial and tangential directions and effects of rotary forging parameters on deformation characteristics are given.  相似文献   

14.
In this paper, a methodology is introduced to address the free vibration analysis of cracked plate subjected to a uniaxial inplane compressive load for the first time. The crack, assumed to be open and at the edge is modeled by a massless linear rotational spring. The governing differential equations are derived using the Mindlin theory, taking into account the effect of initial imperfection. The response is assumed to be consisting of static and dynamic parts. For the static part, differential equations are discretized using the differential quadrature element method and resulting nonlinear algebraic equations are solved by an arc-length strategy. Assuming small amplitude vibrations of the plate about its buckled state and exploiting the static solution in the linearized vibration equations, the dynamic equations are converted into a non-standard eigenvalue problem. Finally, natural frequencies and modal shapes of the cracked buckled plate are obtained by solving this eigenvalue problem. To ensure the validity of the suggested approach an experimental setup and a numerical finite element model have been made to analyze the vibration of a cracked square plate with simply supported boundary conditions. Also, several case-studies of cracked buckled plate problem have been solved utilizing the proposed method, and effects of selected parameters have been studied. The results show that the applied load and geometric imperfection as well as the position, size and depth of the crack have different impact on natural frequencies of the plate.  相似文献   

15.
The plane contact problem of the indentation of a rigid punch into a base-sucured elastic rectangle with stress-free sides is considered. The problem is solved by a method tested earlier and reduces to a system of two integral equations in functions describing the displacement of the surface of the rectangle outside the punch and the normal or shear stress on its base. These functions are sought in the form of the sum of trigonometric series and an exponential function with a root singularity. The ill-posed infinite systems of algebraic equations obtained as a result of this are regularized by introducing small positive parameters. Because the matrix elements of the systems, and also the contact stresses, are defined by poorly converging numerical and functional series, the previously developed method of summation of these series is used. The contact pressure distribution and the dimensionless indenting force are found. Examples of a plane punch calculation are given.  相似文献   

16.
For an overdetermined system of linear algebraic equations, systems obtained by introducing independent random errors into the original right-hand side are examined. Under certain assumptions on how these random variables are distributed, a practical stopping criterion is proposed for an iterative process that minimizes the sum of the squares of the residuals for the above systems. Numerical results demonstrating the efficiency of this criterion for some ill-conditioned problems are presented.  相似文献   

17.
设f(z)是n值的超越代数体函数,其下级μ为有穷.本文证明了f(z)的亏整函数至多有可数个,且相应这些亏整函数和{a_i(z)}的亏量δ(a_i,f)满足:1){δ(a_i,f)}  相似文献   

18.
Series representations for several density functions are obtained as mixtures of generalized gamma distributions with discrete mass probability weights, by using the exponential expansion and the binomial theorem. Based on these results, approximations based on mixtures of generalized gamma distributions are proposed to approximate the distribution of the sum of independent random variables, which may not be identically distributed. The applicability of the proposed approximations are illustrated for the sum of independent Rayleigh random variables, the sum of independent gamma random variables, and the sum of independent Weibull random variables. Numerical studies are presented to assess the precision of these approximations.  相似文献   

19.
The multiple objective optimization models for capacity expansion problem of power generation system in the long run as a base for setting up the marginal abatement cost were examined. In the optimization model the objective function is considered as the weighted sum of several objective functions. Air pollutants are taken into account in both the objective function and the constraints. Different scenarios of pollutant reduction were analyzed. The periods of the years 2003–2013 were taken into account and the results are based on the real data of the Israel electricity sector. Several environmental policies were considered by using the CAPEX system to evaluate the environmental and economic deficiencies in different abatement cost scenarios. The following are obtained: abatement cost for each pollutant, amount of emissions and additional cost connected with the pollutants. Modern decision tools are implemented, such as data envelopment analysis (DEA) and reasonable goal method/interactive decision maps (RGM/IDM) technique as a base for decision-makers to make decisions on energy and environmental policy.  相似文献   

20.
This paper investigates the elastic responses of fibrous nano-composites with imperfectly bonded interface under longitudinal shear. The proposed imperfect interface model is the shear lag (or the spring layer) model; the presented nano interfacial stress model is the Gurtin–Murdoch surface/interface model; and the three-phase confocal elliptical cylinder model is the geometry model accounting for the fiber section shape. By virtue of the complex variable method, a generalized self-consistent method is employed to derive the closed from solution of the effective antiplane shear modulus of the fibrous nano-composites with imperfect interface. Five existing solutions can be regarded as the limit form the present analytic expression. The influences of the interface elastic constant, the interfacial imperfection parameter, the size of the elliptic section fiber, the fiber section aspect ratio, the fiber volume fraction and the fiber elastic property on the effective antiplane shear modulus of the nano-composites are discussed. Particularly, numerical results demonstrate that the interfacial elastic imperfection will always cause a significant reduction in the effective antiplane shear modulus; and the fiber interface stress effect on the effective modulus of the fibrous nano-composites will weaken with the interfacial imperfection increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号