首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A symmetry group method is used to obtain exact solutions for a semilinear radial heat equation in n>1 dimensions with a general power nonlinearity. The method involves an ansatz technique to solve an equivalent first-order PDE system of similarity variables given by group foliations of this heat equation, using its admitted group of scaling symmetries. This technique yields explicit similarity solutions as well as other explicit solutions of a more general (non-similarity) form having interesting analytical behavior connected with blow up and dispersion. In contrast, standard similarity reduction of this heat equation gives a semilinear ODE that cannot be explicitly solved by familiar integration techniques such as point symmetry reduction or integrating factors.  相似文献   

2.
We show that the Benjamin–Bona–Mahoney (BBM) equation with power law nonlinearity can be transformed by a point transformation to the combined KdV–mKdV equation, that is also known as the Gardner equation. We then study the combined KdV–mKdV equation from the Lie group-theoretic point of view. The Lie point symmetry generators of the combined KdV–mKdV equation are derived. We obtain symmetry reduction and a number of exact group-invariant solutions for the underlying equation using the Lie point symmetries of the equation. The conserved densities are also calculated for the BBM equation with dual nonlinearity by using the multiplier approach. Finally, the conserved quantities are computed using the one-soliton solution.  相似文献   

3.
KdV-Burgers方程的对称与孤子解   总被引:1,自引:0,他引:1  
考虑KdV-Burgers方程的一些简单对称及其构成的李代数,并利用对称约化方法将KdV-Burgers方程化为常微分方程,从而得到该方程的群不变解.此外,利用多项式展开式的方法去获得KdV-Burgers方程的新的孤子波解.  相似文献   

4.
热方程的非古典势对称群与不变解   总被引:1,自引:1,他引:0  
主要研究了热方程与波方程的非古典势对称群生成元及相应的群不变解.研究表明对于守恒形式的偏微分方程,可通过其伴随系统求得的非古典势对称群生成元来构造其显式解.这些显式解不能由方程本身的Lie对称群生成元或Lie-B?cklund对称群生成元构造得到.  相似文献   

5.
This paper considers a completely integrable nonlinear wave equation which is called Qiao equation. The equation is reduced via Lie symmetry analysis. Two classes of new exact group-invariant solutions are obtained by solving the reduced equations. Specially, a novel technique is proposed for constructing group-invariant solutions and non-group-invariant solutions based on travelling wave solutions. The obtained exact solutions include a set of traveling wave-like solutions with variable amplitude, variable velocity or both. Nonlocal conservation laws of Qiao equation are also obtained with the corresponding infinitesimal generators.  相似文献   

6.
The Airy stress function, although frequently employed in classical linear elasticity, does not receive similar usage for granular media problems. For plane strain quasi-static deformations of a cohesionless Coulomb-Mohr granular solid, a single nonlinear partial differential equation is formulated for the Airy stress function by combining the equilibrium equations with the yield condition. This has certain advantages from the usual approach, in which two stress invariants and a stress angle are introduced, and a system of two partial differential equations is needed to describe the flow. In the present study, the symmetry analysis of differential equations is utilised for our single partial differential equation, and by computing an optimal system of one-dimensional Lie algebras, a complete set of group-invariant solutions is derived. By this it is meant that any group-invariant solution of the governing partial differential equation (provided it can be derived via the classical symmetries method) may be obtained as a member of this set by a suitable group transformation. For general values of the parameters (angle of internal friction ? and gravity g) it is found there are three distinct classes of solutions which correspond to granular flows considered previously in the literature. For the two limiting cases of high angle of internal friction and zero gravity, the governing partial differential equation admit larger families of Lie point symmetries, and from these symmetries, further solutions are derived, many of which are new. Furthermore, the majority of these solutions are exact, which is rare for granular flow, especially in the case of gravity driven flows.  相似文献   

7.
Classifications of symmetries and conservation laws are presented for a variety of physically and analytically interesting wave equations with power nonlinearities in n spatial dimensions: a radial hyperbolic equation, a radial Schrödinger equation and its derivative variant, and two proposed radial generalizations of modified Korteweg-de Vries equations, as well as Hamiltonian variants. The mains results classify all admitted local point symmetries and all admitted local conserved densities depending on up to first order spatial derivatives, including any that exist only for special powers or dimensions. All such cases for which these wave equations admit, in particular, dilational energies or conformal energies and inversion symmetries are determined. In addition, potential systems arising from the classified conservation laws are used to determine nonlocal symmetries and nonlocal conserved quantities admitted by these equations. As illustrative applications, a discussion is given of energy norms, conserved Hs norms, critical powers for blow-up solutions, and one-dimensional optimal symmetry groups for invariant solutions.  相似文献   

8.
Exact solutions of KdV equation with time-dependent coefficients   总被引:1,自引:0,他引:1  
In this paper, we study the Korteweg-de Vries (KdV) equation having time dependent coefficients from the Lie symmetry point of view. We obtain Lie point symmetries admitted by the equation for various forms for the time-dependent coefficients. We use the symmetries to construct the group-invariant solutions for each of the cases of the arbitrary coefficients. Subsequently, the 1-soliton solution is obtained by the aid of solitary wave ansatz method. It is observed that the soliton solution will exist provided that these time-dependent coefficients are all Riemann integrable.  相似文献   

9.
从微分方程群理论分析角度,研究了一类含有3个任意函数和2个幂非线性项的变系数非线性波动方程.由于方程具有很强的任意性和非线性项,可通过等价性变换寻找方程的不变对称分类.首先给出了等价性变换的一般结果,其中包括一些包含任意元的非局部变换.然后对所研究的方程,利用广义扩展等价群和条件等价群给出了方程的完全对称分类.最后获得并分析了方程的特殊类相似解.  相似文献   

10.
Using the basic Lie symmetry method, we find the most general Lie point symmetries group of the inviscid Burgers’ equation. Looking at the adjoint representation of the obtained symmetry group on its Lie algebra, we find the preliminary classification of its group-invariant solutions. The latter provides new exact solutions for the inviscid Burgers’ equation.  相似文献   

11.
This paper studies the modified Korteweg–de Vries equation with time variable coefficients of the damping and dispersion using Lie symmetry methods. We carry out Lie group classification with respect to the time-dependent coefficients. Lie point symmetries admitted by the mKdV equation for various forms for the time variable coefficients are obtained. The optimal system of one-dimensional subalgebras of the Lie symmetry algebras are determined. These are then used to determine exact group-invariant solutions, including soliton solutions, and symmetry reductions for some special forms of the equations.  相似文献   

12.
Lie symmetry group method is applied to study the affine heat equation for surface. Its symmetry groups and corresponding optimal systems are determined, and group-invariant solutions associated to the symmetries are obtained and classified.  相似文献   

13.
The Hirota method is applied to construct exact analytical solitary wave solutions of the system of multi-dimensional nonlinear wave equation for n-component vector with modified background. The nonlinear part is the third-order polynomial, determined by three distinct constant vectors. These solutions have not previously been obtained by any analytic technique. The bilinear representation is derived by extracting one of the vector roots (unstable in general). This allows to reduce the cubic nonlinearity to a quadratic one. The transition between other two stable roots gives us a vector shock solitary wave solution. In our approach, the velocity of solitary wave is fixed by truncating the Hirota perturbation expansion and it is found in terms of all three roots. Simulations of solutions for the one component and one-dimensional case are also illustrated.  相似文献   

14.
SYMMETRIES AND GROUP-INVARIANT SOLUTIONS OF DIFFERENTIAL EQUATIONS   总被引:4,自引:0,他引:4  
SYMMETRIESANDGROUP-INVARIANTSOLUTIONSOFDIFFERENTIALEQUATIONSTIANCHOUAbstract:Foradifferentialequation,atheoreticalproofofther...  相似文献   

15.
In this paper, the Klein-Gordon equation (KGE) with power law nonlinearity will be considered. The bifurcation analysis as well as the ansatz method of integration will be applied to extract soliton and other wave solutions. In particular, the second approach to integration will lead to a singular soliton solution. However, the bifurcation analysis will reveal several other solutions that are of prime importance in relativistic quantum mechanics where this equation appears.  相似文献   

16.
This paper obtains solutions to the Zakharov-Kuznetsov modified equal width equation with power law nonlinearity. The Lie symmetry approach and the simplest equation method are used to obtain these solutions. Moreover, conservation laws are derived for the underlying equation by employing two approaches: the new conservation theorem and the multiplier method.  相似文献   

17.
How well do multisymplectic discretisations preserve travelling wave solutions? To answer this question, the 5-point central difference scheme is applied to the semi-linear wave equation. A travelling wave ansatz leads to an ordinary difference equation whose solutions can be compared to travelling wave solutions of the PDE. For a discontinuous nonlinearity the difference equation is solved exactly. For continuous nonlinearities the difference equation is solved using a Fourier series, and resonances that depend on the grid-size are revealed for a smooth nonlinearity. In general, the infinite dimensional functional equation, which must be solved to get the travelling wave solutions, is intractable, but backward error analysis proves to be a powerful tool, as it provides a way to study the solutions of equation through a simple ODE that describes the behavior to arbitrarily high order. A general framework for using backward error analysis to analyze preservation of travelling waves for other equations and discretisations is presented. Then, the advantages that multisymplectic methods have over other methods are briefly highlighted.  相似文献   

18.
We perform a complete analysis of all the Lie point symmetries admitted by the equation describing the axisymmetric spreading under gravity of a thin power-law liquid drop on a horizontal plane. We then investigate the existence of group-invariant solutions for particular values of the power-law parameter β.  相似文献   

19.
In this work, the improved tanh-coth method is used to obtain wave solutions to a Korteweg-de Vries (KdV) equation with higher-order nonlinearity, from which the standard KdV and the modified Korteweg-de Vries (mKdV) equations with variable coefficients can be derived as particular cases. However, the model studied here include other important equations with applications in several fields of physical and nonlinear sciences. Periodic and soliton solutions are formally derived.  相似文献   

20.
By means of the classical symmetry method,a hyperbolic Monge-Ampère equation is investigated.The symmetry group is studied and its corresponding group invariant solutions are constructed.Based on the associated vector of the obtained symmetry,the authors construct the group-invariant optimal system of the hyperbolic Monge-Ampère equation,from which two interesting classes of solutions to the hyperbolic Monge-Ampère equation are obtained successfully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号