首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C Hou  Q Liu  J Fan  Y Zhao  P Wang  WY Sun 《Inorganic chemistry》2012,51(15):8402-8408
A microporous and noninterpenetrated metal-organic framework [Cu(3)(L)(2)(DABCO)(H(2)O)]·15H(2)O·9DMF (1) has been synthesized using two different ligands, [1,1':3',1″-terphenyl]-4,4″,5'-tricarboxylic acid (H(3)L) and 1,4-diazabicyclo[2.2.2]octane (DABCO). As revealed by variable-temperature powder X-ray diffraction (VT-PXRD) measurements, N,N'-ditopic DABCO plays an important role for stabilization of the Cu-L framework. The three-dimensional framework of 1 exhibits high stability and excellent adsorption capacity for H(2) (54.3 mg g(-1) at 77 K and 20 bar), CO(2) (871 mg g(-1) at 298 K and 20 bar), CH(4) (116.7 mg g(-1), 99 cm(3) (STP) cm(-3) at 298 K and 20 bar), and n-pentane (686 mg g(-1) at 298 K and 1 bar). Interestingly, the excellent selectivity toward CO(2) over N(2) at ambient temperature (273 and 298 K) and 1 bar makes complex 1 possess practical application in gas separation and purification.  相似文献   

2.
Metal-organic frameworks (MOFs), {[Cu(2)(bdcppi)(dmf)(2)]·10DMF·2H(2)O}(n) (SNU-50) and {[Zn(2)(bdcppi)(dmf)(3)]·6DMF·4H(2)O}(n) (SNU-51), have been prepared by the solvothermal reactions of N,N'-bis(3,5-dicarboxyphenyl)pyromellitic diimide (H(4)BDCPPI) with Cu(NO(3))(2) and Zn(NO(3))(2), respectively. Framework SNU-50 has an NbO-type net structure, whereas SNU-51 has a PtS-type net structure. Desolvated solid [Cu(2)(bdcppi)](n) (SNU-50'), which was prepared by guest exchange of SNU-50 with acetone followed by evacuation at 170 °C, adsorbs high amounts of N(2), H(2), O(2), CO(2), and CH(4) gases due to the presence of a vacant coordination site at every metal ion, and to the presence of imide groups in the ligand. The Langmuir surface area is 2450 m(2) g(-1). It adsorbs H(2) gas up to 2.10 wt% at 1 atm and 77 K, with zero coverage isosteric heat of 7.1 kJ mol(-1), up to a total of 7.85 wt% at 77 K and 60 bar. Its CO(2) and CH(4) adsorption capacities at 298 K are 77 wt% at 55 bar and 17 wt% at 60 bar, respectively. Of particular note is the O(2) adsorption capacity of SNU-50' (118 wt% at 77 K and 0.2 atm), which is the highest reported so far for any MOF. By metal-ion exchange of SNU-51 with Cu(II), {[Cu(2)(bdcppi)(dmf)(3)]·7DMF·5H(2)O}(n) (SNU-51-Cu(DMF)) with a PtS-type net was prepared, which could not be synthesized by a direct solvothermal reaction.  相似文献   

3.
Hu TL  Tao Y  Chang Z  Bu XH 《Inorganic chemistry》2011,50(21):10994-11003
Four new zinc(II) complexes based on the same ligand, {Zn(ptp)(H(2)O)](2) (1), [Zn(ptp)(CH(3)OH)](n) (2), [Zn(ptp)](n) (3), and {[Zn(3)(ptp)(3)](DMF)(2)(H(2)O)}(n) (4) [H(2)ptp = 2,3-bis(pyridine-2-yl)-5,6-di-1H-tetrazol-5-ylpyrazine], have been synthesized by solvothermal methods. All of the complexes have been structurally characterized by elemental analysis, IR, powder X-ray diffraction, and single-crystal X-ray diffraction. Structural analyses show that complex 1 possesses a centrosymmetrical neutral dinuclear structure and 2 has 1D right-handed helical chains, with the 2(1) axis expanding along the crystallographic b direction; 3 features a 2D chiral-layered structure with (6,3) net, and complex 4 displays a 3D porous framework with (4,12(2)) topology. The various architectures (0D, 1D, 2D, and 3D) of these four complexes indicated that reaction conditions (temperature and solvent) play an important role in the formation of such coordination structures; namely, various structures can be obtained from the same reactants by controlling and changing the reaction conditions in this system. The luminescent properties of all of the complexes and the corresponding ligand have been investigated in the solid state at room temperature. Moreover, adsorption properties (N(2), H(2), O(2), CO(2), and CH(4)) of the 4a (desolvated 4) have been studied, and the results show that 4a possesses a moderate capability of gas sorption for N(2), H(2), O(2), and CO(2) gases, with high selectivity ratios for O(2) over H(2) at 77 K and CO(2) over CH(4) at 273 K.  相似文献   

4.
The potential of tetrazolate-based ligands for forming metal-organic frameworks of utility in hydrogen storage is demonstrated with the use of 1,4-benzeneditetrazolate (BDT(2)(-)) to generate a series of robust, microporous materials. Reaction of H(2)BDT with MnCl(2).4H(2)O and Mn(NO(3))(2).4H(2)O in N,N-diethylformamide (DEF) produces the two-dimensional framework solids Mn(3)(BDT)(2)Cl(2)(DEF)(6) (1) and Mn(4)(BDT)(3)(NO(3))(2)(DEF)(6) (2), whereas reactions with hydrated salts of Mn(2+), Cu(2+), and Zn(2+) in a mixture of methanol and DMF afford the porous, three-dimensional framework solids Zn(3)(BDT)(3)(DMF)(4)(H(2)O)(2).3.5CH(3)OH (3), Mn(3)(BDT)(3)(DMF)(4)(H(2)O)(2).3CH(3)OH.2H(2)O.DMF (4), Mn(2)(BDT)Cl(2)(DMF)(2).1.5CH(3)OH.H(2)O (5), and Cu(BDT)(DMF).CH(3)OH.0.25DMF (6). It is shown that the method for desolvating such compounds can dramatically influence the ensuing gas sorption properties. When subjected to a mild evacuation procedure, compounds 3-6 exhibit permanent porosity, with BET surface areas in the range 200-640 m(2)/g. The desolvated forms of 3-5 store between 0.82 and 1.46 wt % H(2) at 77 K and 1 atm, with enthalpies of adsorption in the range 6.0-8.8 kJ/mol, among the highest so far reported for metal-organic frameworks. In addition, the desolvated form of 6 exhibits preferential adsorption of O(2) over H(2) and N(2), showing promise for gas separation and purification applications.  相似文献   

5.
Solvothermal reactions of Zn(NO(3))(2), 1,4-benzenedicarboxylic acid (H(2)bdc), and 4,4'-azopyridine (azpy) in different conditions yielded [Zn(bdc)(bphy)]·DMF·H(2)O (1a, bphy = 1,2-bis(4-pyridyl)hydrazine, DMF = N,N-dimethylformamide) and [Zn(bdc)(bphy)]·EtOH·H(2)O (1b) with two-fold interpenetrated dmp topology and [Zn(2)(bdc)(2)(bphy)]·1.5EtOH·H(2)O (2a) and [Zn(2)(bdc)(2)(bphy)]·DMA·1.5H(2)O (2b, DMA = N,N-dimethylacetamide) with two-fold interpenetrated pcu topology. The in situ reduction of azpy to bphy was confirmed by single-crystal structures and LC-MS analyses of the acid-digested crystalline samples, as well as controlled solvothermal experiments. Removal of the guest molecules in 1a/1b and 2a/2b converts the materials to guest-free phases [Zn(bdc)(bphy)] (1) and [Zn(2)(bdc)(2)(bphy)] (2), respectively, which were identified by PXRD. CO(2) sorption experiments performed at 195 and 298 K showed low porosity for 1 and gated sorption behavior for 2. At 298 K, 2 exhibits high selectivity for adsorbing CO(2) over CH(4).  相似文献   

6.
The mesoporous framework [Cu(3)(L)(H(2)O)(3)]·(DMF)(35)·(H(2)O)(35) (NOTT-119) shows on desolvation a BET surface area of 4118(200) m(2) g(-1), a pore volume of 2.35 cm(3) g(-1), a total H(2) uptake of 101 mg g(-1) at 60 bar, 77 K and a total CH(4) uptake of 327 mg g(-1) at 80 bar, 298 K.  相似文献   

7.
Multifunctional materials, especially those combining two or more properties of interest, are attracting immense attention due to their potential applications. MOFs, metal organic frameworks, can be regarded as multifunctional materials if they show another useful property in addition to the adsorption behavior. Here, we report a new multifunctional light hybrid, MgH(6)ODTMP·2H(2)O(DMF)(0.5) (1), which has been synthesized using the tetraphosphonic acid H(8)ODTMP, octamethylenediamine-N,N,N',N'-tetrakis(methylenephosphonic acid), by high-throughput methodology. Its crystal structure, solved by Patterson-function direct methods from synchrotron powder X-ray diffraction, was characterized by a 3D pillared open framework containing cross-linked 1D channels filled with water and DMF. Upon H(2)O and DMF removal and subsequent rehydration, MgH(6)ODTMP·2H(2)O (2) and MgH(6)ODTMP·6H(2)O (3) can be formed. These processes take place through crystalline-quasi-amorphous-crystalline transformations, during which the integrity of the framework is maintained. A water adsorption study, at constant temperature, showed that this magnesium tetraphosphonate hybrid reversibly equilibrates its lattice water content as a function of the water partial pressure. Combination of the structural study and gas adsorption characterization (N(2), CO(2), and CH(4)) indicates an ultramicroporous framework. High-pressure CO(2) adsorption data are also reported. Finally, impedance data indicates that 3 has high proton conductivity σ = 1.6 × 10(-3) S cm(-1) at T = 292 K at ~100% relative humidity with an activation energy of 0.31 eV.  相似文献   

8.
The synthesis of Mg3(NDC)3(DEF)4 (NDC = 2,6-naphthalenedicarboxylate, DEF = N,N-diethylformamide, 1), the first porous metal-organic framework solid incorporating Mg2+ ions, is reported. Its structure consists of linear Mg3 units linked via NDC bridges to form a three-dimensional framework, featuring one-dimensional channels filled with DEF molecules. Significantly, its framework is fully analogous to that observed within Zn3(NDC)3(CH3OH)2.2DMF.H2O (2), demonstrating that Mg2+ ions can directly substitute for the heavier Zn2+ ions. Compound 1 is readily desolvated by heating at 190 degrees C to give the microporous solid Mg3(NDC)3, exhibiting a BET surface area of 190 m2/g. Adsorption isotherms measured at 77 and 87 K indicate high H2 adsorption enthalpies in the range 7.0-9.5 kJ/mol, depending on the degree of loading. In addition, the material displays selective adsorption of H2 or O2 over N2 or CO, suggesting possible applications in gas separation technologies.  相似文献   

9.
Four heterobimetallic U(vi)/M(ii) (M = Mn, Co, Cd) carboxyphosphonates have been synthesized. M(2)[(UO(2))(6)(PO(3)CH(2)CO(2))(3)O(3)(OH)(H(2)O)(2)]·16H(2)O (M = Mn(ii), Co(ii), and Cd(ii)) adopt cubic three-dimensional network structures with large cavities approximately 16 ? in diameter that are filled with co-crystallized water molecules. [Cd(3)(UO(2))(6)(PO(3)CH(2)CO(2))(6)(H(2)O)(13)]·6H(2)O forms a rhombohedral channel structure with hydrated Cd(ii) within the channels. The cubic compound (Co) displays differential gas absorption with a surface area for CO(2) uptake of 40 m(2) g(-1) at 273 K, and no uptake of N(2) at 77 K.  相似文献   

10.
Five new 2D coordination polymers, [Co(nip)(CuL)(H(2)O)]·CH(3)OH (1), [Mn(ip)(NiL)]·0.63H(2)O (2), [Cu(ip)(CuL)] (3), [Mn(6)(CuL)(6)(btc)(4)(H(2)O)(4)]·7H(2)O (4), and [Cu(CuL)(Hbtc)(H(2)O)] (5)(ML, H(2)L = 2,3-dioxo-5,6,14,15-dibenzo-1,4,8,12-tetraazacyclo-pentadeca-7,13-diene; H(2)nip = 5-nitroisophthalic acid; H(2)ip = m-isophthalic acid; H(3)btc = 1,3,5-benzenetricarboxylic acid) have been synthesized by a solvothermal method and characterized by single-crystal X-ray diffraction. Complexes 1-5 exhibit different 2D layered structures formed by Co(2)Cu(2) (1), Mn(2)Ni(2) (2), Cu(4) (3), Mn(3)Ni(3) (4), Cu(4) (5) units, respectively, via the oxamide and diverse carboxylic acid bridges. Compounds 1, 2, 3 and 5 are uninodal 4-connected (4, 4)-grids topology, while complex 4 possesses a 2D network with (3, 4)-connected (4(2).8)(4)(4(3).6(2).8)(3) topology. The results of magnetic determination show pronounced antiferromagnetic interactions in 1-4.  相似文献   

11.
Hydroxyl- and amino- functionalized [Zn(BDC)(TED)(0.5)]·2DMF·0.2H(2)O leads to two new structures, [Zn(BDC-OH)(TED)(0.5)]·1.5DMF·0.3H(2)O and [Zn(BDC-NH(2))(TED)(0.5)]·xDMF·yH(2)O (BDC=terephthalic acid, TED=triethylenediamine, BDC-OH=2-hydroxylterephthalic acid, BDC-NH(2)=2-aminoterephthalic acid). Single-crystal X-ray diffraction and powder X-ray diffraction studies confirmed that the structures of both functionalized compounds are very similar to that of their parent structure. Compound [Zn(BDC)(TED)(0.5)]·2DMF·0.2H(2)O can be considered a 3D porous structure with three interlacing 1D channels, whereas both [Zn(BDC-OH)(TED)(0.5)]·1.5DMF·0.3H(2)O and [Zn(BDC-NH(2))(TED)(0.5)]·xDMF·yH(2)O contain only 1D open channels as a result of functionalization of the BDC ligand by the OH and NH(2) groups. A notable decrease in surface area and pore size is thus observed in both compounds. Consequently, [Zn(BDC)(TED)(0.5)]·2DMF·0.2H(2)O takes up the highest amount of H(2) at low temperatures. Interestingly, however, both [Zn(BDC-OH)(TED)(0.5)]·1.5DMF·0.3H(2)O and [Zn(BDC-NH(2))(TED)(0.5)]·xDMF·yH(2)O show significant enhancement in CO(2) uptake at room temperature, suggesting that the strong interactions between CO(2) and the functionalized ligands, indicating that surface chemistry, rather than porosity, plays a more important role in CO(2) adsorption. A comparison of single-component CO(2), CH(4), CO, N(2), and O(2) adsorption isotherms demonstrates that the adsorption selectivity of CO(2) over other small gases is considerably enhanced through functionalization of the frameworks. Infrared absorption spectroscopic measurements and theoretical calculations are also carried out to assess the effect of functional groups on CO(2) and H(2) adsorption potentials.  相似文献   

12.
Two isomorphous 3D metal-organic frameworks, {[Cu2(BPnDC)2(bpy)].8 DMF.6 H2O}n (1) and {[Zn2(BPnDC)2(dabco)].13 DMF.3 H2O}n (2), have been prepared by the solvothermal reactions of benzophenone 4,4'-dicarboxylic acid (H2BPnDC) with Cu(NO3)(2).2.5 H2O and 4,4'-bipyridine (bpy), and with Zn(NO3)(2).6 H2O and 4-diazabicyclo[2.2.2]octane (dabco), respectively. Compounds 1 and 2 are composed of paddle-wheel {M2(O2CR)4} cluster units, and they generate 2D channels with two different large pores (effective size of larger pore: 18.2 A for 1, 11.4 A for 2). The framework structure of desolvated solid, [Cu2(BPnDC)2(bpy)]n (SNU-6; SNU=Seoul National University), is the same as that of 1, as evidenced by powder X-ray diffraction patterns. SNU-6 exhibits high permanent porosity (1.05 cm3 g(-1)) with high Langmuir surface area (2910 m2 g(-1)). It shows high H2 gas storage capacity (1.68 wt % at 77 K and 1 atm; 4.87 wt % (excess) and 10.0 wt % (total) at 77 K and 70 bar) with high isosteric heat (7.74 kJ mol(-1)) of H2 adsorption as well as high CO2 adsorption capability (113.8 wt % at 195 K and 1 atm). Compound 2 undergoes a single-crystal-to-single-crystal transformation on guest exchange with n-hexane to provide {[Zn2(BPnDC)2(dabco)].6 (n-hexane).3 H2O}n (2hexane). The transformation involves dynamic motion of the molecular components in the crystal, mainly a bending motion of the square planes of the paddle-wheel units resulting from rotational rearrangement of phenyl rings and carboxylate planes of BPnDC2-.  相似文献   

13.
A three-dimensional (3D) pillared-layer metal-organic framework, [Cd(bipy)(0.5)(Himdc)](DMF)](n) (1), (bipy =4,4'-bipyridine and Himdc = 4,5-imidazoledicarboxylate) has been synthesized and structurally characterized. The highly rigid and stable framework contains a 3D channel structure with highly polar pore surfaces decorated with pendant oxygen atoms of the Himdc linkers. The desolvated framework [Cd(bipy)(0.5)(Himdc)](n) (1') is found to exhibit permanent porosity with high H(2) and CO(2) storage capacities. Two H(2) molecules occluded per unit formula of 1' and the corresponding heat of H(2) adsorption (ΔH(H2)) is about ~9.0 kJ/mol. The high value of ΔH(H2) stems from the preferential electrostatic interaction of H(2) with the pendent oxygen atoms of Himdc and aromatic bipy linkers as determined from first-principles density functional theory (DFT) based calculations. Similarly, DFT studies indicate CO(2) to preferentially interact electrostatically (C(δ+)···O(δ-)) with the uncoordinated pendent oxygen of Himdc. It also interacts with bipy through C-H···O bonding, thus rationalizing the high heat (ΔH(CO2) ~ 35.4 kJ/mol) of CO(2) uptake. Our work unveiled that better H(2) or CO(2) storage materials can be developed through the immobilization of reactive hetero atoms (O, N) at the pore surfaces in a metal-organic framework.  相似文献   

14.
Xiang S  Huang J  Li L  Zhang J  Jiang L  Kuang X  Su CY 《Inorganic chemistry》2011,50(5):1743-1748
Two nanotubular metal-organic frameworks (MOFs), {Cu(L1)·2H(2)O·1.5DMF}(∞) (1) and {Cu(2)(L2)(2)(H(2)O)(2)·7H(2)O·3DMF}(∞) (2), with novel topologies have been constructed based on Cu(2+), 5-(pyridin-4-yl)isophthalic acid (L1) and 5-(pyridin-3-yl)isophthalic acid (L2), respectively. Two MOFs were characterized by IR spectroscopy, thermogravimetry, single-crystal, and powder X-ray diffraction methods. Network analysis reveals a two-nodal (3,6)-connected (4·6(2))(2)(4(2)·6(10)·8(3)) net and a three-nodal (3,4)-connected (4·8(2))(4)(4(2)·8(2)·10(2))(2)(8(4)·12(2)) net. Interpenetration is inherently prevented by both of the topologies of the frameworks. The porosity of MOF 1 was confirmed by N(2) and CO(2) gas adsorption investigations. MOF 1 exhibits remarkable hydrogen sorption hysteresis at low pressure and a H(2) uptake capacity of 1.05 wt% at 77 K and 1 atm.  相似文献   

15.
[Co3(HCOO)6](CH3OH)(H2O) (1), the isostructural analogue of the porous magnet of coordination framework [Mn3(HCOO)6](CH3OH)(H2O), and its desolvated form [Co3(HCOO)6] (2) were prepared and characterized by X-ray and neutron diffraction methods, IR, thermal analyses, and BET, and their magnetic properties were measured. The parent compound, 1, crystallizes in the monoclinic system, space group P21/c, a = 11.254(2) A, b = 9.832(1) A, c = 18.108(3) A, beta = 127.222(2) degrees , V = 1595.5(4) A3, Z = 4, R1 = 0.0329 at 180 K. It possesses a unit cell volume that is 9% smaller than [Mn3(HCOO)6](CH3OH)(H2O) due to the smaller radius of Co2+ ion. Compared with the parent compound 1, the desolvated compound 2 has slightly larger lattice with cell parameters of a = 11.2858(4) A, b = 9.8690(4) A, c = 18.1797(6) A, beta = 127.193(2) degrees , V = 1613.0(1) A3, R1 = 0.0356 at 180 K. The cell parameters of 2, obtained from neutron powder data at 2 K, are a = 11.309(2) A, b = 9.869(1) A, c = 18.201(3) A, beta = 127.244(8) degrees , V = 1617.3(5) A3. The pore volume reduces from 33% to 30% by replacing Mn by Co. The material exhibits a diamond framework based on Co-centered CoCo4 tetrahedral nodes, in which all metal ions have octahedral coordination geometry and all HCOO groups link the metal ions in syn-syn/anti modes. It displays thermal stability up to 270 degrees C. The compound easily loses guest molecules without loss of crystallinity, and it partly reabsorbs water from the atmosphere. Significant N2 sorption was observed for the desolvated framework suggesting that the material possesses permanent porosity. The magnetic properties show a tendency to a 3D long-range magnetic ordering, probably antiferromagnetic with a spin canting arrangement below 2 K.  相似文献   

16.
摘要 藉助模拟强度精修将九个镧系络合物晶体结构的空间群作了修正 .( 1) NaN[Nd(DMSO)5(H2O)3]Cl3· 3H2O从 P1修正为 P;( 2) Er(ClO4)3· 6(CH3)2NC(O)N(CH3)2从 P修正为 R;( 3) Nd(O3SCF3)3· DMF· 6H2O从 P1修正为 R3m;(4)[NaNCCH3][Nd{S2CN(CH2CH3)2}4]从 P修正为 C 2/c;(5)[(CH3)2NCS2]3La· 2DMSO从 Cc修正为 C 2/c;( 6) Yb(C9H7)2· 2THF从 Cc修正为 C 2/c;( 7) [(C6H5)3Ge]2Yb· 4THF从 P21修正为 P 2;(8)TlPr(C36H44N4)2从 Pna2,修正为 Pnma;(9)[CuLaSm(C4O4)4(H2O)16]· 2H2O从 P2修正为 P2.( 8)、( 9)两个络合物结构从非心修正到有心时,不仅改进了键长与键角值,而且影响到分子结构特征的描述 .  相似文献   

17.
A fourfold interpenetrating diamondoid network, [{[Ni(cyclam)]2-(mtb)}(n)].8n H2O.4n DMF (1) (MTB=methanetetrabenzoate, DMF=dimethylformamide), has been assembled from [Ni(cyclam)][ClO4]2 (cyclam=1,4,8,11-tetraazacyclotetradecane) and methanetetrabenzoic acid (H4MTB) in DMF/H2O (7:3, v/v) in the presence of triethylamine (TEA). Despite the high-fold interpenetration, 1 generates 1D channels that are occupied by water and DMF guest molecules. Solid 1, after removal of guest molecules, exhibits selective gas adsorption behavior for H2, CO2, and O2 rather than N2 and CH4, suggesting possible applications in gas separation technologies. In addition, solid 1 can be applied in the fabrication of small Pd (2.0+/-0.6 nm) nanoparticles without any extra reducing or capping agent because a Ni II macrocyclic species incorporated in 1 reduces Pd II ions to Pd 0 on immersion of 1 in the solution of Pd(NO3)2.2H2O in MeCN at room temperature.  相似文献   

18.
[8+12]-metallamacrocycle-based 3D frameworks {[Cu(4)(pbt)(2)(SO(4))(2)(DMF)(2)(CH(3)OH)]·7H(2)O·DMF}(n) (1) and [12]-macrocycle 3D {[Cu(2)(pbt)(SO(4))(DMSO)(CH(3)OH)(2)]·5H(2)O·CH(3)OH}(n) (2) have been obtained. Both complexes display antiferromagnetic couplings and high catalytic activity in the oxidative coupling reaction of 1-ethynylbenzene and oxazolidin-2-one.  相似文献   

19.
A Mn(II)-based homometallic porous metal-organic framework, Mn(5)(btac)(4)(μ(3)-OH)(2)(EtOH)(2)·DMF·3EtOH·3H(2)O (1, btac = benzotriazole-5-carboxylate), has been solvothermally synthesized and structurally characterized by elemental analysis, thermogravimetric analysis, and X-ray crystallographic study. 1 is a 3D neutral framework featuring 1D porous channels constructed by {Mn-OH-Mn}(n) chains and btac linkers. Magnetic studies show that 1 is a 3D metamagnet containing 1D {Mn-OH-Mn}(n) ferrimagnetic chains. High-pressure H(2) adsorption measurement at 77 K reveals that activated 1 can absorb 0.99 wt % H(2) at 0.5 atm and reaches a maximum of 1.03 wt % at 5.5 atm. The steep H(2) absorption at lower pressure (98.2% of the storage capacity at 0.5 atm) is higher than the corresponding values of some MOFs (MIL-100 (16.1%), MOF-177 (57.1%), and MOF-5 (22.2%)). Furthermore, activated 1 can adsorb CO(2) at room temperature and 275 K. The adsorption enthalpy is 22.0 kJ mol(-1), which reveals the high binding ability for CO(2). Detailed gas sorption implies that the exposed Mn(II) coordination sites in the activated 1 play an important role to improve its adsorption capacities.  相似文献   

20.
YX Tan  YP He  J Zhang 《Inorganic chemistry》2012,51(18):9649-9654
High stability and permanent porosity are the premise of general applicability for metal-organic framework materials (MOFs). By varying degrees of success on increasing the connectivity of the linear pillar 4,4'-bipyridine (bpy), two isostructural flexible frameworks [M(2)(obb)(2)(DMF)(2)]·2DMF (1, M = Zn or Cu; H(2)obb = 4,4'-oxybis(benzoic acid), DMF = N,N-dimethylformamide) with no gas sorption are structurally modified into two rigid frameworks [Zn(2)(obb)(2)(bpy)]·DMF (2) and [Cu(2)(obb)(2)(bpy)(0.5)(DMF)]·2DMF (3) with notable gas sorption and separation properties. Especially for 3, it exhibits gas selective uptake for the adsorption of CO(2) over N(2) and CH(4) under 273 K and has an interesting physically lock effect in benzene and cyclohexane sorption. The results provide a successful strategy on tuning framework stability of flexible structures via adding rigid pillars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号