首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Poly(methyl methacrylate) microcapsules have been prepared using the solvent evaporation technique with poly(methacrylic acid) (PMAA) as dispersant. The charge, swelling and desorption of PMAA from the microcapsules after treating the suspension with base have been followed using microelectrophoresis, X-ray photoelectron spectroscopy and quartz crystal microbalance with dissipation monitoring on model PMMA surfaces. Basic treatment of the microcapsule suspension leads to temporary colloidal stability through the introduction of charges on the PMAA chain. However, the increase in charge causes a continuous desorption of PMAA from the microcapsule surface, eventually leading to aggregation. If instead poly(diallyldimethylammonium chloride) is added to the base treated microcapsule suspension, good colloidal stability is obtained.  相似文献   

2.
Preparation of microcapsules applied to the fabrication of self‐healing composites has attracted a lot of attention. However, the leakage of core material from the microcapsule is a major problem in self‐healing microcapsules. Proper dispersion of layered silicates within the wall of microcapsule is a strategy for improving the barrier properties of the microcapsule. In the present study, poly(urea‐formaldehyde) (PUF) microcapsules containing dicyclopentadiene (DCPD) were prepared by in situ polymerization. For the preparation of UF/clay nanocomposite microcapsules, acid‐modified montmorillonite (H‐MMT) was used as an effective catalyst for the condensation of urea and formaldehyde, and the condensation polymerization in the galleries resulted in the delamination of the clay, as confirmed by TEM and XRD analysis. Scanning electron microscopy (SEM) was applied to observe the morphology of the microcapsules and the barrier property of microcapsules was investigated by thermal gravimetry (TG) analysis and mass release method. On comparison with conventional microcapsules (CMs), nanocomposite microcapsules (NCMs) have better barrier property. This can be attributed to the nanocomposite structure of the microcapsules, where nanosized montmorillonite dispersed in UF to decrease the core material cross‐over. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
We introduce a novel method for encapsulation of curcumin by synthesizing microcapsule containing self-assembled nanoparticles using poly (l-lysine), trisodium citrate and silica sol. Such microcapsules can only be prepared in neutral and alkaline environment and unencapsulated curcumin can be effectively removed by simple centrifugation with encapsulation efficiency 57.34%. The particle sizes are in the range 0.7–3 μm with an effective diameter 1.05 μm. The structure of the microcapsules is dependent upon the solubility of curcumin in the solvent environment, the microcapsule are spherical when prepared in 10% acetone and bowl-shaped/conical when prepared in water suspension, however, the size of these curcumin encapsulated microcapsules remain similar. Fluorescence microscope images confirm that curcumin is predominantly concentrated within the shell wall of the capsules. Photophysical behavior of Micro-curcumin with respect to curcumin alone is evaluated. Release of curcumin is found to be triggered by pH where acidic environment trigger maximum release compared to basic and neutral conditions. Micro-curcumin is as stable as curcumin. Drug release efficiency is found to be 61.44% and the drug release profile of Micro-curcumin follow Higuchi model. It is also revealed that β-diketone group of curcumin responsible for scavenging activity is retained in the Micro-curcumin, thus suggesting applicability of such system as a poorly water soluble drug delivery vehicle. In contrast to other curcumin delivery systems, the presented method is easy, fast and does not need flow rate monitoring device. In addition poly (l-lysine) as a non-toxic and highly stable material that prevents metabolic degradation is used in the present preparation method.  相似文献   

4.
Monodisperse polymelamine microcapsules were prepared by phase separation method. Control of microcapsule diameter was investigated using the uniform-sized oil-in-water emulsion droplets as the capsule core. The monodisperse emulsion droplets were prepared using the Shirasu porous glass (SPG) membrane emulsification technique. The effects of the diameter of the oil droplet and concentration of sodium dodecyl sulfate (SDS), which is a typical emulsifier in SPG membrane emulsification, on microencapsulation were investigated. The microcapsules were aggregated when oil droplets with small size were microencapsulated at high SDS concentration. To reduce the SDS concentration, the creamed emulsion was used. The monodisperse polymelamine microcapsules were successfully prepared by using the creamed emulsion. The microcapsule diameter was almost similar to the diameter of the encapsulated oil droplet. The coefficient of variation values was about 10% for all microcapsules prepared in this study. Control of microcapsule diameter was achieved in the range of 5–60 μm.  相似文献   

5.
含润滑油微胶囊复合镀铜机理和镀层性能   总被引:1,自引:0,他引:1  
采用水相分离法制备了以润滑油为囊心、聚乙烯醇为囊壁的微胶囊,并考察了含这种微胶囊复合镀铜层的性能.通过对这种复合镀层微观形貌的观察及耐腐蚀性、耐磨性、动摩擦系数的测定,结果表明由于复合镀铜层中含有润滑油微胶囊,其耐腐蚀性和耐磨性能都得到很大提高,并分析了这种微胶囊复合电沉积的机理和镀层的润滑、修复作用.  相似文献   

6.
以二甲基硅油(PDMS)作为连续相,用搅拌制乳——溶剂挥发的方法制备了聚丙烯腈(PAN)、醋酸纤维素(CA)、壳聚糖(CTS)等几种聚合物包覆Aliquat336(ALQ)、四甘醇(TEG)和牛血清白蛋白(BSA)等分离剂的微胶囊.其中挥发溶剂是N,N-二甲基甲酰胺(DMF),乙酸(AA)和水等极性溶剂.整个制备过程不需要添加任何其他表面活性剂,就可以得到分散性和球形度都很好的微胶囊,相比一般的溶剂挥发过程影响因素少,易于调控.制备得到的微胶囊表面致密,平均粒径在10~100μm之间.通过增加连续相粘度和降低聚合物溶液浓度的方法都可以使微胶囊粒径更小.在PDMS中添加一定量待包覆的萃取剂就可以实现对微胶囊包覆率的调控,实验中ALQ/PAN,TEG/CA和BSA/CTS微胶囊的包覆率分别可以达到0·43,0·38和0·08g/g.  相似文献   

7.
We prepared microcapsules through an organic solvent‐free interfacial polymerization method, which avoids the release of volatile organic compounds arising from conventional interfacial polymerization methods for microencapsulation. These microcapsules have single and narrow particle size distribution and are spherical pellets with smooth and intact shell, and own excellent biodegradability. Additionally, these biodegradable microcapsules have a higher encapsulation efficiency compared with the microcapsules prepared through conventional interfacial polymerization method and possess sustained and controlled release of core materials.  相似文献   

8.
采用乳化溶剂蒸发的方法制备了负载型催化剂环多胺锰/乙基纤维素微胶囊(MnAcL-EC), 并确认了MnAcL在微胶囊内负载后结构的完整性, 对其进行了形貌结构表征, MnAcL-EC微胶囊负载型催化剂内部呈特殊的多芯结构. 该催化剂在活性蓝(C.I. Reactive Blue 49)的氧化反应中表现出了优异的催化性能. 催化反应后微胶囊粒径增大, 球体表面孔道增多; 元素分析结果显示, 微胶囊内负载的MnAcL在催化反应后几乎没有减少, 表明负载后的MnAcL是在微胶囊内部催化了外界底物分子的氧化反应. 所制备的MnAcL-EC微胶囊具备很好的循环利用性, 可以有效减少催化活性组分的流失, 方便回收利用.  相似文献   

9.
The combination of several active substances into one carrier is often limited due to solubility, stability and phase-separation issues. These issues have been addressed by an innovative capsule design, in which nanocapsules are assembled on the microcapsule surface by electrostatic forces to form a pH-responsive hierarchical capsule@capsule system. Here, melamine-formaldehyde (MF) microcapsules with a negative surface charge were synthesized and coated with a novel MF-polyethyleneimine (PEI) copolymer to achieve a positive charge of ζ=+28 mV. This novel coating procedure allows the electrostatic assembly of negatively charged poly-l -lactide (PLLA, ζ=−19 mV) and poly-(lactide-co-glycolide) (PLGA, ζ=−56 mV) nanocapsules on the microcapsule surface. Assembly studies at pH 7 gave a partial surface coverage of PLLA nanocapsules and full surface coverage for PLGA nanocapsules. The pH-responsive adsorption and desorption of nanocapsules was shown at pH 7 and pH 3.  相似文献   

10.
刘莹  吕阳成  骆广生 《催化学报》2013,34(9):1635-1643
采用微流控技术结合悬浮聚合方法实现了百微米级含膦配体聚苯乙烯微胶囊的可控制备, 微胶囊尺寸在320~420 μm范围内可调, 且单分散性好. 扫描电子显微镜、能量散射光谱和电感耦合等离子发射光谱结果证实了其形貌和组成的均匀性及钯负载的可控性和有效性. 以溴代芳烃与苯硼酸的Suzuki偶联反应为模型反应评价了负载Pd(PPh3)4的百微米级微胶囊的催化性能, 发现其性能与文献报道的7~8 μm的同类催化剂微胶囊接近, 且均优于均相催化剂; 该催化剂经简单过滤后, 可实现多次循环使用, 未发现活性物种的流失. 该法实现了连续制备, 因而有助于提高制备的效率和可控性. 另外, 所制百微米级催化剂微胶囊在固定床反应器内具有较高催化剂浓度和机械性能, 且优于浆态床中使用的微米级催化剂微胶囊.  相似文献   

11.
含VE微胶囊的制备及其控制释放性能研究   总被引:6,自引:0,他引:6  
以天然维生素E(VE)为芯材,利用Shirasu porous glass (SPG) 膜乳化结合液中干燥法,制备了粒径单分散的聚苯乙烯(PS)微胶囊.微胶囊的粒径为膜孔径的4倍,粒径单分散系数CV小于0.2.考察了改变PS和VE的比例及微胶囊的粒径对控制释放性能的影响.  相似文献   

12.
In this work, the producing of a biodegradable poly(l-lactide) (PLA)/poly(ethylene glycol) (PEG) microcapsule by emulsion solvent evaporation method was investigated. The effect of PEG segments added to the PLA microcapsules on the degradation, size distribution, and release behavior was studied. According to the results, PLA/PEG copolymer was more hydrophilic than PLA homopolymer, and with lower glass transition temperature. The surface of PLA/PEG microcapsules was not as smooth as that of PLA microcapsules, the mean diameters of prepared PLA and PLA/PEG microcapsules were 40 and 57 microm, respectively. And spherical forms were observed by the image analyzer and the scanning electron microscope (SEM). Drug release from microcapsules was affected by the properties of PLA/PEG copolymers determined by UV-vis spectra. It was found that the drug release rates of the microcapsules were significantly increased with adding of PEG, which explained by increasing hydrophilic groups.  相似文献   

13.
采用原位聚合法用三聚氰胺-甲醛树脂包覆正十八烷,制备出相变微胶囊.利用扫描电镜和差示扫描量热仪对微胶囊试样的表面形貌和热物理性能进行了研究.实验结果表明:制备的相变微胶囊表面光滑,平均粒径2.84μm,平均壁厚0.41μm.  相似文献   

14.
This paper describes the preparation and characterization of a novel drug delivery system for protein, liposomes-in-alginate (LIA) of biodegradable polymers, which is conceived from a combination of the polymer and the lipid-based delivery systems. LIA were prepared by first entrapping bovine serum albumin (BSA), a model protein within multivesicular liposomes (MVLs) by double emulsification process, which are then encapsulated within alginate hydrogel microcapsule, with untrapped BSA which are added during preparation of MVLs. Factors impacting encapsulation efficiency of MVLs are investigated and release of protein from the microcapsules in vitro is studied. At the same time, characterization of MVLs, microcapsules encapsulated protein formulation and integrality analyse of BSA in microcapsules are also studied, with the aim of improving the entrapment efficiency and prolonging release time. It is found that encapsulation efficiency and size of MVLs are affected by the composition and fabrication parameters of LIA. The data also show LIA have high encapsulation efficiency (up to 95%), little chemical change in drug caused by the formulation process, narrow particle size distribution and spherical particle morphology. Drug release assays conducted in vitro indicates that these formulations provide sustained release of encapsulated drug over a period, about 2 weeks.  相似文献   

15.
Chitosan and sodium alginate have the opposite charges; they can become a gelatin by the electrostatic attraction, High-voltage electrostatic droplet generator method was used to prepare chitosan-sodium alginate microcapsule. Multi-layer chitosan-sodium alginate microcapsule was prepared through layer-by-layer self-assembly, and the morphology was investigated. In addition, the release property of ofloxacin in microcapsules was studied by UV-Vis microscopy under different conditions such as pH value, layer number, etc. The results showed that the prepared microcapsules have a smooth surface with average particle size about 100 μm. The result of controlled release indicated that the prepared microcapsules are pH-independent, and the rate of release decreased when the layer number increases.  相似文献   

16.
光致变色微胶囊的制备与性能   总被引:2,自引:1,他引:1  
以蜜胺树脂为壁材、光致变色材料为芯材,采用原位聚合法制备了具有光致变色性能的微胶囊.研究了三聚氰胺/甲醛摩尔比、壁材与芯材的用量比、乳化剂浓度等因素对微胶囊形貌及性能的影响.在最佳工艺条件下制备的变色微胶囊,在日光和紫外光下具有快速、可逆的光致变色性能.  相似文献   

17.
Dielectric measurement of a single sub-millimeter size microcapsule   总被引:1,自引:0,他引:1  
A new technique is described for measuring dielectric dispersion of a single microcapsule in suspension over a frequency range from 1 kHz to 10 MHz. It was applied to polystyrene microcapsules which showed a two-step dielectric dispersion, that is, a superposition of two Debye type dispersions. The dielectric dispersion was analyzed by an electrical model in which a spherical core covered with a shell is immersed in a continuous phase, yielding the phase parameters related to the microcapsule: the wall thickness, the permittivity and conductivity of the core phase. The advantage of this technique is that it can characterize individual microcapsules, whereas the conventional method provides average properties of many microcapsules. Hence, the technique enables us to directly determine the distributions of the phase parameters and to exactly examine the relationship between the dielectric behavior and the microcapsule structure simultaneously observed by microscopy.  相似文献   

18.
A glucose-sensitive microcapsule with a porous membrane and with linear-grafted polyacrylic acid (PAAC) chains and covalently bound glucose oxidase (GOD) enzymes in the membrane pores acting as functional gates was successfully prepared. Polyamide microcapsules with a porous membrane were prepared by interfacial polymerization, PAAC chains were grafted into the pores of the microcapsule membrane by plasma-graft pore-filling polymerization, and GOD enzymes were immobilized onto the PAAC-grafted microcapsules by a carbodiimide method. The release rates of model drug solutes from the fabricated microcapsules were significantly sensitive to the existence of glucose in the environmental solution. In solution, the release rate of either sodium chloride or VB(12) molecules from the microcapsules was low but increased dramatically in the presence of 0.2mol/L glucose. The prepared PAAC-grafted and GOD-immobilized microcapsules showed a reversible glucose-sensitive release characteristic. The proposed microcapsules provide a new mode for injection-type self-regulated drug delivery systems having the capability of adapting the release rate of drugs such as insulin in response to changes in glucose concentration, which is highly attractive for diabetes therapy.  相似文献   

19.
In this work urea-formaldehyde microcapsules containing an epoxy resin are prepared by in situ polymerization of monomers in an oil-in-water emulsion. Scanning electronic microscopy (SEM) was performed to investigate on microcapsule size and surface morphology. Calorimetric and spectroscopic analyses were carried out with the aim of evaluate the encapsulation yield and the shell features. Factors determining the microencapsulability of the core material were described. In particular, our interest was devoted to a better understanding of the influence of the reaction parameters on the microcapsule properties. It was found that the encapsulation yield as well as the extent of urea-formaldehyde polymerization depends on the reaction temperature and the stirring speed.  相似文献   

20.
Polyelectrolyte microcapsules with avidin-poly(styrene sulfonate) (PSS) membrane were prepared by a layer-by-layer deposition technique. The uptake and release of biotin-labeled fluorescein (b-FITC) as well as immobilization of biotin-labeled glucose oxidase (b-GOx) to the microcapsule were studied. The polyelectrolyte microcapsules were prepared by coating the surface of calcium carbonate (CaCO(3)) microparticles with an avidin/PSS multilayer membrane, followed by dissolution of CaCO(3) core in an ethylenediaminetetraacetic acid solution. Inner and outer poly(allylamine)/PSS films were required to isolate the microcapsules, whereas microcapsules could not be formed without the support. The uptake of b-FITC into the microcapsule was highly enhanced through a strong binding of b-FITC to avidin as compared with the uptake of biotin-free FITC. Release of b-FITC from the microcapsule was accelerated upon addition of biotin due to a competitive binding of the added biotin to the binding site of avidin. Similarly, the surface of microcapsule was modified with b-GOx with retaining its catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号