首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer and linear low-density polyethylene (LLDPE) were blended and irradiated by γ rays to prepare shape memory polymer (SMP). Different weight fractions of conductive carbon black (CB) were filled into SMP to form a novel electroactive shape memory CB/SBS/LLDPE composite. The CB reinforced radiation cross-linked SBS/LLDPE blends for the improvement of the mechanical weakness and conductivity of SBS/LLDPE bulk and for wide practical engineering uses. The electroactive shape memory CB/SBS/LLDPE composites were investigated by electrical properties, mechanical, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and electroactive shape memory effects. It is found that the tensile strength, storage modulus, and resistance against mechanical and thermal mechanical cycle loading in the developed composites increased due to the role of reinforcement of CB. The melting temperatures and volume resistance of the composites decreased with the increment of CB for excellent electrical conductivity of CB. The electroactive shape memory effects of developed CB/SBS/LLDPE composites were affected by CB weight fractions and applied voltage, while good shape recovery could be obtained in the shape recovery test. When the CB fraction is more than 5 wt%, full recovery can be observed after tens of seconds and shape recovery speed increased with CB fractions and voltage increasing. However, the shape recovery rate decreases slightly with increment of cycle times.  相似文献   

2.
鄢定祥 《高分子科学》2016,34(12):1490-1499
An electromagnetic interference (EMI) shielding composite based on ultrahigh molecular weight polyethylene (UHMWPE) loaded with economical graphite-carbon black (CB) hybrid fillers was prepared via a green and facile methodology, i.e., high-speed mechanical mixing combined with hot compression thus avoiding the assistance of the intensive ultrasound dispersion in volatile organic solvents. In this composite, the graphite-CB hybrid fillers were selectively distributed in the interfacial regions of UHMWPE domains resulting a typical segregated structure. Thanks to the specific morphology of segregated conductive networks along with the synergetic effect of large-sized graphite flakes and small-sized CB nanoparticles, a low filler loading of 7.7 vol% (15 wt%) yielded the graphite-CB/UHMWPE composites with a satisfactory electrical conductivity of 33.9 S/m and a superior shielding effectiveness of 40.2 dB, manifesting the comparable value of the pricey large-aspect-ratio carbon nanofillers (e.g., carbon nanotubes and graphene nanosheets) based polymer composites. More interestingly, with the addition of 15 wt% graphite-CB (1/3, W/W) hybrid fillers, the tensile strength and elongation at break of the composite reached 25.3 MPa and 126%, respectively; with a remarkable increase of 58.1% and 2420% over the conventional segregated graphite/UHMWPE composites. The mechanical reinforcement could be attributed to the favor of the small-sized CB particles in the polymer molecular diffusion between UHMWPE domains which in turn provided a stronger interfacial adhesion. This work provides a facile, green and affordable strategy to obtain the polymer composites with high electrical conductivity, efficient EMI shielding, and balanced mechanical performance.  相似文献   

3.
A procedure is developed for preparing conducting films by their casting from polymer solutions containing polyaniline in the form of a protonated emeraldin base and polyimides in two cosolvents, N-methylpyrrolidone or m-cresol. Self-supporting films cast from composites based on polyimides and camphorsulfonic acid-protonated polyaniline combine a conductivity of 10?1?10?2S/cm with good mechanical properties: elastic modulus E = 2.0?2.4 GPa, breaking strength σb = 55?60 MPa, and elongation at break ?b = 8?10%. It has been shown that, when m-cresol and N-methylpyrrolidone are used as cosolvents, the maximum film conductivity is achieved at polyaniline amounts in the composites of 20 and 3%, respectively. In the latter case, films with good strength parameters are formed.  相似文献   

4.
In this study,the maleic anhydride(MAH)and styrene(St)dual monomers grafted polypropylene(PP)and poly[styrene-b-(ethylene-co-butylene)-b-styrene](SEBS),i.e.PP-g-(MAH-co-St)and SEBS-g-(MAH-co-St)are prepared as multi-phase compatibilizers and used to compatibilize the PA6/PS/PP/SEBS(70/10/10/10)model quaternary blends.Both PS and SEBS are encapsulated by the hard shell of PP-g-(MAH-co-St)in the dispersed domains(about 2μm)of the PA6/PS/PP-g-(MAH-co-St)/SEBS(70/10/10/10)quaternary blend.In contrast,inside the dispersed domains(about 1μm)of the PA6/PS/PP/SEBS-g-(MAH-co-St)(70/10/10/10)quaternary blend,the soft SEBS-g-(MAH-co-St)encapsulates both the hard PS and PP phases and separates them.With increasing the content of the compatibilizers equally,the morphology of the PA6/PS/(PP+PP-g-(MAH-co-St))/(SEBS+SEBS-g-(MAH-co-St))(70/10/10/10)quaternary blends evolves from the soft(SEBS+SEBS-g-(MAH-co-St))encapsulating PS and partially encapsulating PP(about 1μm),then to PS exclusively encapsulated by the soft SEBS-g-(MAH-co-St)and then separated by PP-g-(MAH-co-St)inside the smaller domains(about 0.6μm).This morphology evolution has been well predicted by spreading coefficients and explained by the reaction between the matrix PA6 and the compatibilizers.The quaternary blends compatibilized by more compatibilizers exhibit stronger hierarchical interfacial adhesions and smaller dispersed domain,which results in the further improved mechanical properties.Compared to the uncompatibilized blend,the blend with both 10 wt%PP-g-(MAH-co-St)and 10 wt%SEBS-g-(MAH-co-St)has the best mechanical properties with the stress at break,strain at break and impact failure energy improved significantly by 97%,71%and 261%,respectively.There is a strong correlation between the structure and property in the blends.  相似文献   

5.
Thermal and rheological properties of plant-based natural filler-reinforced polyethylene bio-composites applying various filler loadings as well as the impacts of the different compatibilizers were investigated by means of differential scanning calorimetry and dynamic mechanical thermal analysis (DMTA). As lignocellulosic materials, such as rice-husk flour and wood flour, are eco-friendly biomaterials and a thermoplastic polymer, for example, high-density polyethylene, has good physico-mechanical and thermal properties, therefore their bio-composites can combine and utilize these two advantages at the same time. The temperature of the α-relaxation (T α) slightly increased and melting temperatures (T m) of the matrix polymer in the case of the studied bio-composites did not shift significantly as the filler loading changed, because the rigid interphase hinders the motion of polymer segments resulting in the increase in T α and only weak interactions developed at the interface between the matrix polymer and the reinforcement in the case of non-compatibilized composites. However, compatibility between the reinforcement and the matrix polymer was enhanced by incorporating compatibilizers, which further improved stiffness. From the DMTA experiment, the reinforcements result in composite samples having higher storage modulus (E′) than the neat polymer sample, indicating that incorporating lignocellulosic filler increased their stiffness.  相似文献   

6.
Polyimide/silver composite films were successfully prepared by in situ polymerization. A precursor, AgNO3 was used as the source of the silver nanoparticles. The structure and morphology of resulting films were characterized by FTIR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Consequently, the silver nanoparticles were well dispersed in polyimide matrix. Meanwhile, thermal properties from thermal gravimetric analyses (TGA) and mechanical properties from tensile test which confirmed composites were kept good performance as compared to pure polyimide. In addition, the antimicrobial activity of polyimide/silver composite films against three different bacteria, B. subtilis, S. aureus, and E. coil, illustrated excellent activity. This composite is potential useful as antimicrobial material with good thermal performance in a wide variety of biomedical and general use applications.  相似文献   

7.
武琳 《高分子科学》2016,34(5):523-531
Miniemulsion stabilized by poly(2-(dimethylamino) ethyl methacrylate)-block-poly(butyl methylacrylate) (PDMAEMA-b-PBMA) diblock copolymers has been used as liquid templates for the synthesis of polymer nanocapsules via quaternization cross-linking of PDMAEMA segments of the copolymer by 1,2-bis(2-iodoethoxy)ethane (BIEE) crosslinkers. PDMAEMA-b-PBMAs here as a stabilizer in miniemulsion with different molecular weights led to a size variation in diameters of nanocapsules, demonstrating the capsules have potential design capability of this technique. The solution behavior of the capsules has been also investigated in this paper.  相似文献   

8.
Isocyanate-treated graphite oxides(i GOs) were well-dispersed into the polystyrene(PS) thin films and formed a novel network structure. With control in fabrication, an i GOs-web layer was horizontally embedded near the surface of the films and thus formed a composite slightly doped by i GOs. This work demonstrated that the i GOs network can remarkably depress the dewetting process in the polymer matrix of the composite, while dewetting often leads to rupture of polymer films and is considered as a major practical limit in using polymeric materials above their glass transition temperatures(Tg). Via annealing the 50–120 nm thick composite and associated neat PS films at temperatures ranging from 35 °C to 70 °C above Tg, surface morphology evolution of the films was monitored by atomic force microscopy(AFM). The i GOs-doped PS exhibited excellent thermal stability, i.e., the number of dewetting holes was greatly reduced and the long-term hole growth was fairly restricted. In contrast, the neat PS film showed serious surface fluctuation and a final rupture induced by ordinary dewetting. The method developed in this work may pave a road to reinforce thin polymer films and enhance their thermal stability, in order to meet requirements by technological advances.  相似文献   

9.
Two novel donor–acceptor (D–A) copolymers P1 and P2 with the thiazoloquinoxaline repeating acceptor moiety and different donor moieties of benzo[1,2-b:4,5-b']dithiophene and isomeric benzo[2,1-b:3,4-b']dithiophene have been prepared. The polymers show light absorption at 300–1200 nm and a band gap width of 0.98 and 1.14 eV, respectively. The energies of the HOMO (–5.42 and–5.29 eV) and LUMO (–3.90 and–3.83 eV) levels of polymers P1 and P2 have been determined. The absorption maximum for polymer P1 in the long-wavelength region is red-shifted by 161 nm, which is caused by stronger charge transfer in P1 as compared with P2. This fact indicates that the benzo[1,2-b:4,5-b']dithiophene structural moiety has a higher electron-donating ability than the benzo[2,1-b:3,4-b']dithiophene moiety. The red shift of the absorption spectrum of polymer P1 in comparison with that of P2 indicates that interchain π–π stacking interactions are more efficient in P1 than in P2.  相似文献   

10.
The study involved preparation of poly(acrylamide-co-itaconic acid) hydrogels by radical cross-linking copolymerization. The copolymer hydrogels were characterized through infrared spectroscopy, thermal analysis, swelling measurements and in oscillatory and steady shear rheology. Results showed that more stable copolymers were formed due to the strong interaction in the hydrogels. These hydrogels have shown substantial percent swelling in water and shrinking in saline solution and acidic buffers. The rheological properties were described by the Herschel-Bulkley and power-law models to explore their non-Newtonian behavior. The results showed that higher itaconic acid content raised the polymer viscosity; the degree of shear-thinning and polymer elasticity (G′) were also increased. The transition from the viscous (G′ < G″) to the predominant viscoelastic behavior (G′ > G″) occurs at a crossover frequency ranged from 17.8 rad/s for polyacrylamide to 15.7, 12.8 and 12.5 rad/s for copolymers.  相似文献   

11.
Block copolymers poly(endo-N-3,5-bis(trifluoromethyl)biphenyl-norbornene-pyrrolidine)-block-poly(exo-N-(cinnamoyloxyethyl)-7-oxanorborn-5-ene-2,3-dicarboximide) (endo-PTNP-b-exo-PCONBI) and poly(exo-N-3,5-bis(trifluoromethyl)biphenyl-norbornene-pyrrolidine)-block-poly(exo-N-(cinnamoyloxyethyl)-7-oxanorborn-5-ene-2,3-dicarboximide) (exo-PTNP-b-exo-PCONBI) were synthesized by ring-opening metathesis polymerization. The endo- or exo-PTNP served as the high dielectric functional chain, and exo-PCONBI acted as the crosslinking segment. The endo-PTNP-b-exo-PCONBI, in which endo-PTNP has a high content of trans double bond and adopts isotactic configuration, shows a dielectric constant (ε) of 15.5, whereas exo-PTNP-b-exo-PCONBI, in which exo-PTNP has 67% trans double bonds and atactic microstructure, displays relatively low ε of 7.1. The cinnamate groups in exo-PCONBI were crosslinked to form three-dimensional network by cycloaddition reaction under UV irradiation. Exposed to UV-light for 10 min, the cinnamate group in polymer films has a crosslinking conversion of 36%, as determined by UV-Vis absorption measurements. By photocrosslinking, the polymer film has an increased ε of 16.6, a dielectric loss of 0.03, an elevated glass-transition temperature of 137 °C, and an enhanced decomposition temperature of 405 °C, compared to those of polymer films without irradiation.  相似文献   

12.
Poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) blends were prepared using melt processing. The effects of maleic anhydride grafted PLA (PLA-g-MA) and calcium carbonate (CaCO3) content on mechanical, thermal, and morphological properties of the blends were investigated. PLA-g-MA was synthesized by varying monomer and initiator contents using a reactive melt-grafting process. Tensile properties of PLA/PBAT blend were enhanced with adding 2 phr of PLA-g-MA. SEM micrographs exhibited the improvement of interfacial adhesion between PLA and PBAT in the compatibilized blend. Moreover, thermal stability of the blends improved with presence of PLA-g-MA. With increasing CaCO3 content, Young’s modulus of the composites increased.  相似文献   

13.
张杰 《高分子科学》2016,34(8):1001-1013
In this article, crystalline morphology and molecular orientation of isotactic polypropylene (iPP), random copolymerized polypropylene (co-PP) and β-nucleating agent (β-NA) composites prepared by pressure vibration injection molding (PVIM) have been investigated via polarized light microscopy, scanning electron microscopy, wide-angle X-ray diffraction and differential scanning calorimetry. Results demonstrated that the interaction between co-PP and iPP molecular chains was beneficial for the mechanical improvement and the introduction of β-NA further improved the toughness of iPP. In addition, after applying the pressure vibration injection molding (PVIM) technology, the shear layer thickness increased remarkably and the tensile strength improved consequently. Thus, the strength and toughness of iPP/co-PP/β-NA composites prepared by PVIM were simultaneously improved compared to those of the pure iPP prepared by conventional injection molding (CIM): the impact toughness was increased by five times and tensile strength was increased by 9 MPa. This work provided a new method to further enhance the properties of iPP/co-PP composites through dynamic processing strategy.  相似文献   

14.
In this work, hybrid conductive fillers of carbon black (CB) and carbon nanotubes (CNTs) were introduced into polylactide (PLA)/thermoplastic poly(ether)urethane (TPU) blend (70/30 by weight) to tune the phase morphology and realize rapid electrically actuated shape memory effect (SME). Particularly, the dispersion of conductive fillers, the phase morphology, the electrical conductivities and the shape memory properties of the composites containing CB or CB/CNTs were comparatively investigated. The results suggested that both CB and CNTs were selectively localized in TPU phase, and induced the morphological change from the sea-island structure to the co-continuous structure. The presence of CNTs resulted in a denser CB/CNTs network, which enhanced the continuity of TPU phase. Because the formed continuous TPU phase provided stronger recovery driving force, the PLA/TPU/CB/CNTs composites showed better shape recovery properties compared with the PLA/TPU/CB composites at the same CB content. Moreover, the CB and CNTs exerted a synergistic effect on enhancing the electrical conductivities of the composites. As a result, the prepared composites exhibited excellent electrically actuated SME and the shape recovery speed was also greatly enhanced. This work demonstrated a promising strategy to achieve rapid electrically actuated SME via the addition of hybrid nanoparticles with self-networking ability in binary PLA/TPU blends over a much larger composition range.  相似文献   

15.
Fibres and fabrics are often used to reinforce shape memory polymers (SMPs) to improve their mechanical strength and properties, and such composites have been widely used in engineering. However incorporation of fibres and fabrics in SMPs is often accompanied with the deterioration of thermomechanical properties and shape memory effect. The thermomechanical properties and deterioration mechanisms of a shape memory polymer composite (SMPC) under repeated mechanical stress were investigated. Up to 100% extension, the SMPCs showed good shape memory effect with excellent shape recovery ratio, recovery stress and mechanical properties; while beyond that the recovery ratio and recovery stress of the composites deteriorated rapidly due to the significant delamination and debonding of fibres and fabrics from the SMP resin and accumulation of broken fibres.  相似文献   

16.
郭睿  史向阳 《高分子科学》2016,34(9):1047-1059
In this study, multiwalled carbon nanotubes (MWCNTs) were used to encapsulate a model anticancer drug, doxorubicin (Dox). Then, the drug-loaded MWCNTs (Dox/MWCNTs) with an optimized drug encapsulation percentage were mixed with poly(lactide-co-glycolide) (PLGA) polymer solution for subsequent electrospinning to form drug-loaded composite nanofibrous mats. The structure, morphology, and mechanical properties of the formed electrospun Dox/PLGA, MWCNTs/PLGA, and Dox/MWCNTs/PLGA composite nanofibrous mats were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and tensile testing. In vitro viability assay and SEM morphology observation of mouse fibroblast cells cultured onto the MWCNTs/PLGA fibrous scaffolds demonstrate that the developed MWCNTs/PLGA composite nanofibers are cytocompatible. The incorporation of Dox-loaded MWCNTs within the PLGA nanofibers is able to improve the mechanical durability and maintain the three-dimensional structure of the nanofibrous mats. More importantly, our results indicate that this double-container drug delivery system (both PLGA polymer and MWCNTs are drug carriers) is beneficial to avoid the burst release of the drug and able to release the antitumor drug Dox in a sustained manner for 42 days. The developed composite electrospun nanofibrous drug delivery system may be used as therapeutic scaffold materials for post-operative local chemotherapy.  相似文献   

17.
蔡杰  张俐娜 《高分子科学》2016,34(10):1281-1289
High strength cellulose composite films with antibacterial activities were prepared by dispersing montmorillonites (MMT) into cellulose solution in LiOH/urea aqueous solvent followed by regeneration in ethanol coagulation bath, and then by soaking in 5 wt% hexadecylpyridine bromide ethanol solutions to induce the antibacterial action. The cellulose/MMT composite films were characterized by field emission scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, FTIR, UV-spectra, wide angle X-ray diffraction and mechanical test. The results revealed that MMT was dispersed well in the cellulose matrix to form layer structure with a thickness of approximately 3 nm. The mechanical properties of the cellulose/MMT composite films were significantly improved to achieve 132 MP for tensile strength as a result of the MMT delamination. The hexadecylpyridine bromide was fixed well in the cellulose/MMT matrix through cation exchange, leading to the excellent antibacterial activities against Staphylococcus aureus and Escherichia coli, which is important in their practical applications.  相似文献   

18.
Electrochemical behavior of poly-3,4-ethylenedioxythiophene composites with manganese dioxide (PEDOT/MnO2) has been investigated by cyclic voltammetry and electrochemical quartz crystal microbalance at various component ratios and in different electrolyte solutions. The electrochemical formation of PEDOT film on the electrode surface and PEDOT/MnO2 composite film during the electrochemical deposition of manganese dioxide into the polymer matrix was gravimetrically monitored. The mass of manganese dioxide deposited into PEDOT at different time of electrodeposition and apparent molar mass values of species involved into mass transfer during redox cycling of PEDOT/MnO2 composites were evaluated. It was found that during the redox cycling of PEDOT/MnO2 composite films with various MnO2 content, the oppositely directed fluxes of counterions (anions and cations) occur, resulting in a change of the slope of linear parts of the Δf–E plots with changing the mass fraction of MnO2 in the composite film.Rectangular shape of cyclic voltammograms of PEDOT/MnO2 composites with different loadings of manganese dioxide was observed, which is characteristic of the pseudocapacitive behavior of the composite material. Specific capacity values of PEDOT/MnO2 composites obtained from cyclic voltammograms were about 169 F g?1. The specific capacity, related to the contribution of manganese dioxide component, was about 240 F g?1.  相似文献   

19.
Poly(methyl methacrylate-b-styrene) (PMMA-b-PS) block copolymers are synthesized by two consecutive ATRPs and fractionated into four fractions. The halogen chain end fidelity (CEF) in PMMA-b-PS is quantified based on the analysis of each fraction. Compared to ethyl 2-phenyl-2-bromoacetate/CuBr/2,2′-bipyridine (EPBA/CuBr/bpy) and CuBr/N,N,N′,N″,N″-pentamethyldiethylenetriamine (CuBr/PMDETA) catalysts, PMMA-b-PS synthesized using p-toluenesulfonyl chloride/CuCl/bpy (TsCl/CuCl/bpy) and CuCl/PMDETA catalysts has a higher halogen CEF and a better control on molecular weight.  相似文献   

20.
《先进技术聚合物》2018,29(1):190-197
This paper proposes a new technique for the preparation of foamed Eucommia ulmoides gum (EUG)/high‐density polyethylene (HDPE) shape memory composites and establishes the relationship between structures and properties in foamed shape memory composites. Eucommia ulmoides gum/HDPE shape memory composites are designed to memorize 2 temporary shapes by exploiting the different melting points of the 2 phases; the triple shape memory effect in the composites is investigated via mechanical measurements, thermal analysis, and shape memory behavior analysis. The results show that HDPE phase enables the composites to effectively memorize the first temporary shape and EUG phase contributes the second temporary shape. When the ratios of EUG and HDPE were 80/20 and 70/ 30, the composite exhibited satisfactory shape memory behavior with favorable shape fixity ratio and shape recovery ratio, in addition to excellent mechanical properties (tensile strength of 15 MPa, tear strength above 51 KN/m, and foam porosity of about 11%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号