首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Defect centers formed in irradiated LiMgPO4:Tb,B phosphor have been investigated using the electron spin resonance technique. O?, BO32?, PO2?, and F+ are some of the centers observed in the gamma-irradiated phosphor. The phosphor exhibits thermoluminescence (TL) peaks at around 110°C, 175°C, and 260°C. An attempt has been made to determine the correlation between the defect centers and the observed TL peaks.  相似文献   

2.
Lithium Calcium borate (LiCaBO3) polycrystalline thermoluminescence (TL) phosphor doped with rare earth (RE3+) elements has been synthesized by high temperature solid state diffusion reaction. The reaction has produced a very stable crystalline LiCaBO3:RE3+ phosphors. Among these RE3+ doped phosphors thulium doped material showed maximum TL sensitivity with favorable glow curve shape. TL glow curve of gamma irradiated LiCaBO3:Tm3+ samples had shown two major well-separated glow peaks at 230 and 430 °C. The glow peak at 430 °C is almost thrice the intensity of the glow peak at 230 °C. The TL sensitivity of the phosphor to gamma radiation was about eight times that of TLD-100 (LiF). Photoluminescence and TL emission spectra showed the characteristic Tm3+ peaks. TL response to gamma radiation dose was linear up to 103 Gy. Post-irradiation TL fading on storage in room temperature and elevated temperatures was studied in LiCaBO3:Tm3+ phosphor.  相似文献   

3.
Magnesium tetraborate (MTB) doped with rare earth elements were synthesized by solid state sintering technique. Among the different rare earth dopants studied in this phosphor, gadolinium doped phosphors resulted in a single intense dosimetric peak at 250 °C and this is the first report in rare earth-doped MgB4O7 with a glow peak above 200 °C Photoluminescence (PL) and thermoluminescence (TL) studies were performed with this phosphor after exposing the powder samples to ionizing radiation. Monovalent dopants, including Na, Li and Ag, were found to increase the TL sensitivity of the MgB4O7:Gd phosphor without a shift in the TL peak temperature. The TL emission spectra showed characteristic emission of the host lattice, which showed an increase on doping with rare earth or monovalent codopants. The TL sensitivity, dose response curve, and post-irradiation storage stability were studied for the possible use of this material in radiation dosimetry applications. The TL parameters, such as the activation energy, the frequency factor, and the order of kinetics were determined for the Gd-doped MgB4O7 phosphor. The phosphor was found to be reusable after a few cycles of irradiation and annealing. The post-irradiation storage stability studies showed that this near tissue-equivalent phosphor, which has a gamma sensitivity five times that of TLD-100, is suitable for medical dosimetry applications.  相似文献   

4.
LiCaBO3 was synthesized by high-temperature solid-state reaction. The influence of different rare earth dopants, i.e. Dy3+, Tb3+, Tm3+ and Ce3+, on thermoluminescence (TL) of LiCaBO3 phosphor was discussed. We studied the TL properties and some dosimetric characteristics of Ce3+-activated LiCaBO3 phosphor in detail. The effect of the concentration of Ce3+ on TL was investigated, the result of which showed that the optimum Ce3+ concentration was 1 mol%. The TL kinetic parameters of LiCaBO3:0.01Ce3+ were studied by computer glow curve deconvolution (CGCD) method. The three-dimensional (3D) TL emission spectra were also studied, peaking at 431 and 474 nm due to the characteristic transition of Ce3+. We also studied the linearity, annealing condition, reproducibility, fading and different heating rate of the LiCaBO3:0.01Ce3+ phosphor.  相似文献   

5.
Polycrystalline KMgSO4Cl:Eu and Na5(PO4)SO4:Ce phosphors prepared by a wet chemical method have been studied for its photoluminescence (PL) and thermoluminescence (TL) characteristics. The TL glow curve of the compound has a prominent peak at 200 °C and may be useful for TL study. TL sensitivity of the KMgSO4Cl:Eu phosphor is found to be 1.7 times less than that of TLD—CaSO4:Dy. The presence of bands at around 420, 435 and 445 nm in the PL emission spectra of the phosphor suggests the presence of Eu2+ in the host compound. Moreover a TL glow curve of the Na5(PO4)SO4:Ce gives a better understanding of the TL mechanism (peaks at 271 and 310 °C) involved in the concerned phosphor. The PL emission spectra are observed at 382 nm for the various concentrations. In this paper we report PL and TL characteristics of KMgSO4Cl:Eu halosulphate and Na5(PO4)SO4:Ce phosphate sulphate phosphors first time.  相似文献   

6.
Electron spin resonance (ESR), thermoluminescence and photoluminescence studies in Eu2+ activated Sr5(PO4)3Cl phosphor are reported in this paper. The Sr5(PO4)3Cl:Eu2+ phosphor is twice as sensitive as the conventional CaSO4:Dy phosphor used in thermoluminescence dosimetry of ionizing radiations. It has a linear response, simple glow curve, emission peaking at 456 nm. The defect centers formed in the Sr5(PO4)3Cl:Eu2+phosphor are studied by using the technique of ESR. A dominant TL glow peak at 430 K with a smaller shoulder at 410 K is observed in the phosphor. ESR studies indicate the presence at three centers at room temperature. Step annealing measurements show a connection between one of the centers and the dominant glow peak at 430 K. The 430 K TL peak is well correlated with center I, which is tentatively identified as (PO4)2− radical.  相似文献   

7.
Blue–green emitting BaAlxOy:Eu2+,Dy3+ phosphor was synthesized by the combustion method. The influence of various parameters on the structural, photoluminescence (PL) and thermoluminescence (TL) properties of the phosphor were investigated by various techniques. Phosphor nanocrystallites with high brightness were obtained without significantly changing the crystalline structure of the host. In the PL studies, broad-band excitation and emission spectra were observed with major peaks at 340 and 505 nm, respectively. The observed afterglow is ascribed to the generation of suitable traps due to the presence of the co-doped Dy3+ ions. Though generally broad, the peak structure of the TL glow curves obtained after irradiation with UV light was non-uniform with suggesting the contribution to afterglow from multiple events at the luminescent centers. Further insight on the afterglow behavior of the phosphor was deduced from TL decay results.  相似文献   

8.
A novel long-lasting afterglow phosphor ZrO2:Ti is prepared by the conventional solid-stated method and their luminescent properties are investigated. A bluish white strong and broad emissive band, which is attributed to originate from the recombination of electrons trapped by F+ centers and the holes created in Valence band, is observed under 254 nm UV irradiation. The identical color long afterglow, which lasts about 1 h, is found in the ZrO2:Ti phosphor after removing the 254 nm UV light. The mechanism of the long lasting phosphorescence (LLP) has been discussed based on the thermoluminescence (TL) results. The replacement of Zr by Ti produces more anion vacancies, resulting in the enhanced photoluminescence (PL) and LLP of ZrO2:Ti sample. These results indicate that ZrO2:Ti phosphor has potential promising applications.  相似文献   

9.
Magnesium tetra borate (MTB) doped with rare earths (REs) was prepared by the solid state sintering technique. Among the different RE dopants studied in this phosphor, gadolinium-doped phosphors resulted in a dosimetric peak at a relatively higher temperature. The thermoluminescence (TL) emission spectra of RE-doped MTB showed characteristic RE 3+ emissions. Electron paramagnetic resonance measurements were carried out in these phosphors to identify the defect centers formed during gamma irradiation and to establish a mechanism for the TL process. Signals corresponding to (BO 3)2?, O v? were seen upon irradiation which vanished on annealing at 250 °C, showing the role of these centers in the TL process. The thermal activation energies calculated based on the decay of these signals matched well with those calculated on the basis of the usual conventional method showing the validity of the mechanism of TL.  相似文献   

10.
In this paper, thermoluminescence (TL) studies of BaCa(SO4)2:Eu,Dy phosphor are reported. A microcrystalline sample of BaCa(SO4)2:Eu,Dy was prepared by a solid state diffusion method and the formation of the compound was confirmed by the X-ray diffraction study. Morphology of the phosphor was analyzed by scanning electron microscopy (SEM). The sample is found to have an average particle size of 5?µm. TL glow curves of the γ-irradiated samples with different concentrations of Eu and Dy were studied and compared with BaCa(SO4)2:Eu and BaCa(SO4)2:Dy. It has been found that a single peak was located at around 230°C with the highest TL intensity in BaCa(SO4)2:Eu,Dy which is eight times and two times more than singly Dy- and Eu-doped BaCa(SO4)2 phosphor, respectively. For TL analysis, BaCa(SO4)2:Eu,Dy (0.2?mol%, 1?mol%) is annealed at different temperatures ranging from 900°C to 1100°C. Analysis of the TL glow curve was carried out by a glow curve deconvoluted method. Trapping parameters (activation energy and frequency factor) of all TL glow curves were evaluated by Chen's peak shape method. A comparison of trapping parameters between BaCa(SO4)2:Eu,Dy; BaCa(SO4)2:Eu and BaCa(SO4)2:Dy phosphors at 900°C, 1000°C and 1100°C is also reported in this paper.  相似文献   

11.
Abstract

Photoluminescence and thermoluminescence in BaSO4:Eu is reported. In earlier works, divalent Eu has been studied in BaSO4. In the present work Eu was incorporated as in predominantly Eu3+ or Eu2+ form. It is shown that RE3+ ? RE2+ conversion or RE2+ ? RE+ conversion is not an integral part of gamma induced TL. Eu3+ ? Eu2+ conversion, on the other hand, may be important in UV induced TL. Low UV efficiency of this material is attributed to poor Eu3+ ? Eu2+ conversion. This is in quite contrast to the analogus material CaSO4: Eu.  相似文献   

12.
ABSTRACT

The present phosphor K2Ca(SO4)2, doped by dysprosium and europium, is synthesized by the solid-state diffusion method. The doping concentration varied from 0.1 to 0.5?mol% by weight. A phosphor is studied for X-ray powder diffraction, surface morphology analytical scanning electron microscopy and analyzed by energy-dispersive X-ray spectroscopy. The prepared phosphor K2Ca(SO4)2, doped by Dy and Eu, has been characterized for thermoluminescence (TL) glow curve, showing maximum peak temperatures at 176°C and at 200°C, respectively. TL peak intensity of K2Ca(SO4)2: Dy and Eu was compared with the standard TLD CaSO4:Dy phosphor. Both phosphors show the dose linearity ranging from 20 to 240?Gy doses of γ-rays of 60Co source at room temperature. Negligible fading has been observed when irradiated with γ-rays and stored for 60 days without taking any care from sunlight. The TL materials were used in powder forms. The linearity of ESR response with dose for powder forms of K2Ca(SO4)2: Dy was also studied using the signals at g?=?2:0039 (SO3?) and at g?=?2:02282 (SO4?). It was observed that the range of linearity of dose response extended between 20 and 240?Gy. Kinetic parameters have been calculated using three different methods: Chen's peak shape method, various heating rate method and initial rise method. To study the heating rate method, the glow curve was recorded for the heating rate as 1°C, 3°C, 5°C, 7°C, 9°C each time. Electron spin resonance (ESR) shows the ionic radical formation during γ-irradiation, which is responsible for TL. The effect of temperature and microwave power on the ESR signal was also studied.  相似文献   

13.
Thermoluminescence (TL) properties of sulfate-based phosphors activated by different rare earths have received tremendous attention to the field of radiation dosimetry. Those TL materials based on CaSO4 have been widely applied for medical and environmental dosimetry. Taking this fact into account we have synthesized Na6Mg(SO4)4 doped with Ce and Tb by wet chemical method. The prepared phosphor was characterized by XRD, FTIR, photoluminescence (PL) and thermoluminescence. For TL study, the phosphor is irradiated with γ-rays from 60Co source. For studying luminescence properties, the prepared phosphor was annealed at different temperatures and effects of these annealing temperatures on Na6Mg(SO4)4 samples are investigated and quantified. The changes in the glow curve and PL emission spectrum are also investigated as a function of annealing temperature and the annealing temperature was optimized. For calculation of trapping parameters various methods such as peak shape (PS) method, initial rise (IR) method, various heating rate (VHR) method, and computerized glow curve deconvolution (CGCD) are employed.  相似文献   

14.
In this paper, we have reported a new Na 2Sr 2Mg (BO 3)2F 2:Dy 3+ thermoluminescence (TL) phosphor prepared via the wet chemical method. Prepared phosphor was characterized by X-ray powder diffraction, photoluminescence (PL), TL and scanning electronmicroscopy techniques. The scanning electronmicroscopic image of Na 2Sr 2Mg (BO 3)2F 2:Dy 3+ phosphor confirms the micron size of particles. Under the PL study, the characteristic emission spectrum of Dy 3+ corresponding to 4F 9/26H 15/2 (481 nm) and 4F 9/26H 13/2 (576 nm) transitions was observed. The TL property of the as prepared phosphor was also found to be good. TL intensity of Na 2Sr2Mg(BO 3)F 2:Dy 3+ phosphors at 0.99 kGy exposure of γ-irradiations was compared with standard CaSO 4:Dy phosphor. It was seen that TL intensity of Na 2Sr 2Mg (BO 3)2F 2: Dy 3+ phosphors is 1.1 times less compared with the standard CaSO 4:Dy TL dosimeter phosphor. The kinetic parameters are also discussed in detail. The values of activation energy E (eV) and frequency factor S (s ?1) were found to be 0.57 eV and 1.25×106 s?1, respectively.  相似文献   

15.
In this study, Li2BPO5 doped with Cu and that co-doped with Mg are synthesized by the wet chemical technique and exposed to γ rays of 60Co to determine their thermoluminescence (TL) properties. The X-ray diffraction technique shows the crystalline nature of the prepared material. The photoluminescence (PL) emission spectra of Li2BPO5:Cu phosphor show the strong prominent peak at 368 nm in the violet region of the visible spectrum due to the transition of 3d94s1 ? 3d10 of monovalent copper ion. The PL emission of Li2BPO5:Cu is enhanced by the addition of Mg. The TL glow curves of γ-irradiated Li2BPO5:Cu sample show one glow peak at 143°C, indicating that only one set of traps is being activated within the particular temperature range each with its own value of activation energy (E) and frequency factor (s). The trapping parameters associated with the prominent glow peak of Li2BPO5:Cu are calculated using the glow curve shape (Chen's) method. The release of hole/electron from defect centers at the characteristic trap site initiates the luminescence process in these materials. A linear TL response is observed in Li2BPO5:Cu in a long span of exposures. The sensitivity of Li2BPO5:Cu sample is observed to be 7.8 times that of (TLD-100) LiF:Mg, Ti.  相似文献   

16.
Abstract

Nominally pure and Dy-doped BaF2 crystals were investigated concerning their optical absorption (OA) and thermoluminescence (TL) properties. Peaks at 120—150 and 200°C were observed for a heating rate of 1.7°C/s. The TL response for γ-rays and the TL emission spectra were obtained for these peaks. Except for the purest crystal, all BaF2 crystals produced OA bands before irradiation typical of Ce3+ ions. After irradiation, Dy doped crystals showed bands due to Dy2+ ions. A nominally pure sample gave bands related to Ce2+ ions and photochromic centers of Ce3+ ions. and photochromic centres of Ce3+ ions. The correlation between some OA bands and TL peaks is discussed.  相似文献   

17.
Red long-lasting phosphor Y2O2S:Eu3+, Zn2+, Ti4+ nanotubes were prepared by hydrothermal method. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence and thermoluminescence spectra (TL) were used to characterize the long-lasting phosphor. XRD investigation revealed that the product synthesised under 750 °C for 6 h was a pure phase of Y2O2S. SEM observation showed that the sulfuretted phosphor inherited the tube-like shape from the precursor. Under 325 nm UV excitation, the result indicated the strongest red-emission lines at 627 nm, corresponded to the transition from 5D0 to 7F2 level of Eu3+ ion. Both the afterglow decay curves and TL curves revealed that the phosphor had efficient luminescent and excellent long-lasting properties.  相似文献   

18.
By introducing the Y3+ into Sr2P2O7:Eu2+, we successfully prepared a kind of new phosphor with blue long-lasting phosphorescence by the high-temperature solid-state reaction method. In this paper, the properties of Sr2P2O7:Eu2+,Y3+ were investigated utilizing XRD, photoluminescence, luminescence decay, long-lasting phosphorescence and thermoluminescence (TL) spectra. The phosphor emitted blue light that was related to the 4f65d1-8S7/2 transition of Eu2+. The bright blue phosphorescence could be observed by naked eyes even 8 h after the excitation source was removed. Two TL peaks at 317 and 378 K related to two types of defects appeared in the TL spectrum. By analyzing the TL curve the depths of traps were calculated to be 0.61 and 0.66 eV. Also, the mechanism of LLP was discussed in this report.  相似文献   

19.
Radioluminescence at room temperature and thermoluminescence (TL) measurements of single-doped and codoped LiNaSO4 above room temperature are reported here. The codoped samples were studied to investigate the possibility of enhancing the TL sensitivity of LiNaSO4:Eu. This objective was not satisfied and the codopants (Ce, Sm, Ho and Er) decrease the TL sensitivity and slightly shift the dosimetric peak to lower temperatures. Samples doped with Mg, K, Bi and Tl were used with the hope that they may alter the trapping centers stability and introduce new peaks in the temperature range 430–500 K to observe any TL discontinuity or wavelength shift in their spectra as observed in CL measurements. This objective was fulfilled with Tl and Bi, where there is a discontinuity and/or wavelength shift at about 460 K. Such intensity and/or wavelength variations are ascribed to microstructural phase changes within the LiNaSO4 crystals that may result from twin boundaries behaving like Na2SO4.  相似文献   

20.
Al2O3:Si,Ti, prepared under oxidizing condition at high temperature, gives PL emission around 430 nm when excited with 240 nm. The Al2O3:C, TL/OSL phosphor, also shows emission around 430 nm, which corresponds to characteristic emission of F-center. Thus, to identify the exact nature of luminescent center in Al2O3:Si,Ti, fluorescence lifetime measurement studies were carried out along with the PL,TL and OSL studies. The PL and TL in Al2O3:Si,Ti show emission around 430 nm and the time-resolved fluorescence studies show lifetime of about 43 μs for the 430 nm emission, which is much smaller than the reported lifetime of ∼35 ms for the 430 nm emission (F-center emission) in Al2O3:C phosphor. Therefore, the emission observed in Al2O3:Si,Ti phosphor was assigned to Ti4+ charge transfer transition. Fluorescence studies of Al2O3:Si,Ti do not show any traces of F and F+ centers. Also, Ti4+ does not show any change in the charge state after gamma-irradiation. On the basis of the above studies, a mechanism for TSL/OSL process in Al2O3:Si,Ti is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号