首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Reactions of [NBu4][Re(O)Cl4] with bis(pyrazol-1-yl)methane (bpzm) and bis(pyrazol-1-yl)acetate (Hbpza) and with the lithium salts lithium [bis(3,5-dimethylpyrazol-1-yl)acetate] (Libdmpza) and lithium [bis(3,5-dimethylpyrazol-1-yl)methanesulfonate] (Libdmpzs) produce a series of new compounds containing either a kappa2-N,N bidentate pyrazolyl ligand [Re(O)(bpzm)Cl3 (1), Re(O)(bpzm)(OMe)Cl2 (2), Re(O)(bpzaOMe)(OMe)Cl2 (4)] or a kappa3-N,N,O heteroscorpionate [Re(O)(bpza)Cl2 (3), Re(O)(bdmpza)Cl2 isomers 5 and 6, Re(O)(bdmpza)(OMe)Cl (7), Re(O)(bdmpza)(OEt)Cl (8), Re(O)(bdmpzs)(OMe)Cl (9), Re(O)(bdmpzs)(OEt)Cl (10)]. X-ray analyses of 1 and 3 show in both cases a distorted octahedral environment around the rhenium atom. The nature and the geometry of the products are strongly determined by the reaction solvent and by the heteroscorpionate ligand itself. When scorpionates bear methylated pyrazolyl rings mixed heterocomplexes Re(O)(bdmpza)(glycol) (11) and Re(O)(bdmpzs)(glycol) (12) are obtained (H2glycol = ethylene glycol). Also 11 shows an octahedral geometry as assessed by X-ray study.  相似文献   

2.
Shakya R  Wang Z  Powell DR  Houser RP 《Inorganic chemistry》2011,50(22):11581-11591
The ligand binding preferences of a series of potentially pentadentate pyridylbis(aminophenol) ligands were explored. In addition to the previously reported ligands 2,2'-(2-methyl-2-(pyridin-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)diphenol (H(2)L(1)) and 6,6'-(2-methyl-2-(pyridin-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)bis(2,4-di-tert-butylphenol) (H(2)L(1-tBu)), four new ligands were synthesized: 6,6'-(2-methyl-2(pyridine-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)bis(2,4-dibromophenol) (H(2)L(1-Br)), 6,6'-(2-methyl-2(pyridine-2-yl)propane-1,3diyl)bis(azanediyl)bis(methylene)bis(2-methoxyphenol) (H(2)L(1-MeO)), 2,2'-(2-methyl-2(pyridine-2-yl)propane-1,3diyl)bis(azanediyl)bis(methylene)bis(4-nitrophenol) (H(2)L(1-NO2)), and 2,2'-(2-phenylpropane-1,3-diyl)bis(azanediyl)bis(methylene)diphenol (H(2)L(2)). These ligands, when combined with copper(II) salts and base, form either tricopper(II) species or monocopper(II) species depending on the nucleophilicity of the phenol groups in the ligands. All copper complexes were characterized by X-ray crystallography, cyclic voltammetry, and spectroscopic methods in solution. The ligands in trimeric complexes [{CuL(1)(CH(3)CN)}(2)Cu](ClO(4))(2) (1), [{CuL(1)Cl}(2)Cu] (1a), and [{CuL(2)(CH(3)CN)}(2)Cu](ClO(4))(2) (1b) and monomeric complex [CuL(1-tBu)(CH(3)OH)] (2) coordinate in a tetradentate mode via the amine N atoms and the phenolato O atoms. The pyridyl groups in 1, 1a, and 2 do not coordinate, but instead are involved in hydrogen bonding. Monomeric complexes [CuL(1-Br)] (3a), [CuL(1-NO2)] (3b), and [CuL(1-MeO)Na(CH(3)OH)(2)]ClO(4) (3c) have their ligands coordinated in a pentadentate mode via the amine N atoms, the phenolato O atoms, and the pyridyl N atom. The differences in tetradentate vs pentadentate coordination preferences of the ligands correlate to the nucleophilicity of the phenolate donor groups, and coincide with the electrochemical trends for these complexes.  相似文献   

3.
Vertical excitation energies and oscillator strengths for several valence and Rydberg electronic states of vinyl, propen-1-yl, propen-2-yl, 1-buten-2-yl, and trans-2-buten-2-yl radicals are calculated using the equation-of-motion coupled cluster methods with single and double substitutions (EOM-CCSD). The ground and the lowest excited state (n <-- pi) equilibrium geometries are calculated using the CCSD(T) and EOM-SF-CCSD methods, respectively, and adiabatic excitation energies for the n <-- pi state are reported. Systematic changes in the geometries, excitation energies, and Rydberg state quantum defects within this group of radicals are discussed.  相似文献   

4.
Conclusions The major product of the reaction of triethylsilane with propargyl chloride in the presence of the H2PtCl6-I2 catalytic system is triethyl(3-chloropropyn-1-yl)silane. Triethylchloro, triethyl(propen-2-yl)triethyl(propen-1-yl)-, triethyl(propyn-1-yl)-, and triethyl(propadienyl)silanes are also formed.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 9, pp. 2137–2138, September, 1986.  相似文献   

5.
abstract

Computational investigations were done on bis(1-allyl-3-benzyl-2,3-dihydro-1H-benzo[d]imidazol-2-yl)silver(I), bis(1-benzyl-3-butyl-2,3-dihydro-1H-benzo[d]imidazol-2-yl)silver(I), bis(1-allyl-3-benzyl-2,3-dihydro-1H-benzo[d]imidazol-2-yl)dibromidepalladium(II), and bis(1-benzyl-3-butyl-2,3-dihydro-1H-benzo[d]imidazol-2-yl)dibromidepalladium(II) complexes. Related complexes were optimized at different six calculation levels which are HF/6-31G(LANL2DZ), HF/6-31G(d,p)(LANL2DZ), B3LYP/6-31G(LANL2DZ), B3LYP/6-31G(d,p)(LANL2DZ), M062X/6-31G(LANL2DZ) and M062X/6-31G(d,p)(LANL2DZ) levels in vacuo. IR and NMR spectrum are calculated and examined in detail. Energy diagram of molecular orbitals, contour diagram of frontier molecular orbitals, molecular electrostatic potential maps and the harmonic surface of related molecules are examined in detail. Finally, interactions between mentioned complexes and related proteins (1BNA, 1JNX, and 2ING) are investigated in detail. As a result, it is found that biological and anti-cancer properties of silver N-heterocyclic carbene complexes are higher than those of palladium complexes.  相似文献   

6.
The preparation of new "scorpionate" ligands in the form of the lithium derivatives [(Li(bdmpzdta)(H(2)O))(4)] (1) [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate], [Li(bdphpza)(H(2)O)(THF)] (2) [bdphpza = bis(3,5-diphenylpyrazol-1-yl)acetate], and [Li(bdphpzdta)(H(2)O)(THF)] (3) [bdphpzdta = bis(3,5-diphenylpyrazol-1-yl)dithioacetate] has been carried out. Furthermore, a series of titanium complexes has been prepared by reaction of TiCl(4)(THF)(2) with the lithium reagents [(Li(bdmpza)(H(2)O))(4)] (4) [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate] and 1. Under the appropriate experimental conditions neutral complexes, namely [TiCl(3)(kappa(3)-bdmpza)] (5), [TiCl(3)(kappa(3)-bdmpzdta)] (6), and [TiCl(2)(kappa(2)-bdmpzdta)(2)] (7), and cationic complexes, namely [TiCl(2)(THF)(kappa(3)-bdmpza)]Cl (8) and [TiCl(2)(THF)(kappa(3)-bdmpzdta)]Cl (9), were isolated. Complexes 8 and 9 undergo an interesting nucleophilic THF ring-opening reaction to give the corresponding alkoxide-containing species [TiCl(2)(kappa(3)-bdmpza)(O(CH(2))(4)Cl)] (10) and [TiCl(2)(kappa(3)-bdmpzdta)(O(CH(2))(4)Cl)] (11). A family of alkoxide-containing complexes of general formulas [TiCl(2)(kappa(3)-bdmpza)(OR)] [R = Me (12); R = Et (14); R = (i)Pr (16); R = (t)Bu (18)] and [TiCl(2)(kappa(3)-bdmpzdta)(OR)] [R = Me (13); R = Et (15); R = (i)Pr (17)] was also prepared. The structures of these complexes have been determined by spectroscopic methods, and in addition, the X-ray crystal structures of 3, 7, 10, and 11 were also established.  相似文献   

7.
Two novel facial-capping tris-naphthyridyl compounds, 2-chloro-5-methyl-7-((2,4-dimethyl-1,8-naphthyridin-7(1H)-ylidene)(2,4-dimethyl-1,8-naphthyridin-7-yl))methyl-1,8-naphthyridine (L(1)) and 2-chloro-7-((2-methyl-1,8-naphthyridin-7(1H)-ylidene)(2-methyl-1,8-naphthyridin-7-yl))methyl-1,8-naphthyridine (L(2)), as well as their Cu(i) and Pb(ii) complexes, [CuL(a)(PPh(3))]BF(4) (1) (PPh(3) = triphenylphosphine, L(a) = bis(2,4-dimethyl-1,8-naphthyridin-7-yl)(2-chloro-5-methyl-1,8-naphthyridin-7-yl)methane), [CuL(b)(PPh(3))]BF(4) (2) (L(b) = bis(2-methyl-1,8-naphthyridin-7-yl)(2-chloro-1,8-naphthyridin-7-yl)methane), [Pb(OL(a))(NO(3))(2)] (3) (OL(a) = bis(2,4-dimethyl-1,8-naphthyridin-7-yl)(2-chloro-5-methyl-1,8-naphthyridin-7-yl)methanol) and [Pb(L(b))(2)][Pb(CH(3)OH)(NO(3))(4)] (4), have been synthesized and characterized by X-ray diffraction analysis, MS, NMR and elemental analysis. The structural investigations revealed that the transfer of the H-atom at the central carbon to an adjacent naphthyridine-N atom affords L(1) and L(2) possessing large conjugated architectures, and the central carbon atoms adopt the sp(2) hybridized bonding mode. The reversible hydrogen transfer and a geometric configuration conversion from sp(2) to sp(3) of the central carbon atom were observed when Pb(II) and Cu(I) were coordinated to L(1) or L(2). The molecular energy changes accompanying the hydrogen migration and titration of H(+) to different receptor-N at L(1) were calculated by density functional theory (DFT) at the SCRF-B3LYP/6-311++G(d,p) level in a CH(2)Cl(2) solution, and the observed lowest-energy absorption and emission for L(1) and L(2) can be tentatively assigned to an intramolecular charge transfer (ICT) transition in nature.  相似文献   

8.
The new N,N,O ligand 2,2-bis(3,5-dimethylpyrazol-1-yl)propionic acid (2,2-Hbdmpzp) (2) and its transition metal complexes [Mn(2,2-bdmpzp)(CO)(3)] (3), [Re(2,2-bdmpzp)(CO)(3)] (4), [Cu(2,2-bdmpzp)(2)] (5), and [Ru(2,2-bdmpzp)Cl(L)(PPh(3))] [L = PPh(3) (6), N(2) (7), CO (8a/b), SO(2) (9a/b)] have been synthesized, characterized and compared to analogous complexes bearing a bis(3,5-dimethylpyrazol-1-yl)acetic acid. It was found that the additional methyl group has a remarkable influence on the stability and reactivity of transition metal complexes.  相似文献   

9.
NH-Bridged tetradentate ligands were synthesized to achieve stable trans Ru(II) bis(polypyridyl) complexes. The polypyridyl part of the ligand was either symmetric, as in N,N-bis(1,10-phenanthroline-2-yl)amine (phen-NH-phen), or asymmetric, as in N-(1,10-phenanthroline-2-yl)-N-(6-yl-dipyridyl[2,3-a:2',3'-c]phenazine)amine (dppz-NH-phen). Protonation of phen-NH-phen with trifluoroacetic acid and the subsequent reaction with RuCl3 yield trans-[Ru(phen-NH-phen)Cl2]. The chloro ligands in this compound can easily be replaced by stronger ligands, such as CH3CN and DMSO. In this way, complexes trans-[Ru(phen-NH-phen)(CH3CN)(DMSO)](PF6)2 (1), trans-[Ru(phen-NH-phen)(DMSO)2](PF6)2 (2), and trans-[Ru(phen-NH-phen)(CH3CN)2](PF6)2 (3) were obtained. X-ray structures were determined for 1 and 3. Following a procedure similar to that used with phen-NH-phen, the complex trans-[Ru(dppz-NH-phen)(CH3CN)2](PF6)2 (4) was obtained. To our knowledge, this is the first reported trans ruthenium(II) bis(polypyridyl) complex with two different polypyridyl ligands in the equatorial plane.  相似文献   

10.
The structure and H(2)O(2)-reactivity of a series of copper(II) complexes supported by tris[(pyridin-2-yl)methyl]amine (TPA) derivatives having a phenyl group at the 6-position of pyridine donor group(s) [(6-phenylpyridin-2-yl)methyl]bis[(pyridin-2-yl)methyl]amine (Ph(1)TPA), bis[(6-phenylpyridin-2-yl)methyl][(pyridin-2-yl)methyl]amine (Ph(2)TPA), and tris[(6-phenylpyridin-2-yl)methyl]amine (Ph(3)TPA) have systematically been examined to get insights into the aromatic substituent (6-Ph) effects on the coordination chemistry of TPA ligand system. The X-ray crystallographic analyses have revealed that [Cu(II)(TPA)(CH(3)CN)](ClO(4))(2) (CuTPA) and [Cu(II)(Ph(3)TPA)(CH(3)CN)](ClO(4))(2) (3) exhibit a trigonal bipyramidal structure, whereas [Cu(II)(Ph(1)TPA)(CH(3)CN)](ClO(4))(2) (1) shows a slightly distorted square pyramidal structure and [Cu(II)(Ph(2)TPA)(CH(3)CN)](ClO(4))(2) (2) has an intermediate structure between trigonal bipyramidal and square pyramidal. On the other hand, the UV-vis and ESR data have suggested that all the copper(II) complexes have a similar trigonal bipyramidal structure in solution. The redox potentials of CuTPA, 1, 2, and 3 have been determined as E(1/2) = -0.34, -0.28, -0.16, and -0.04 mV vs Ag/AgNO(3), respectively, demonstrating that introduction of each 6-Ph group causes positive shift of E(1/2) about 0.1 V. Notable difference in H(2)O(2)-reactivity has been found among the copper(II) complexes. Namely, CuTPA and 1 afforded mononuclear copper(II)-hydroperoxo complexes CuTPA-OOH and 1-OOH, respectively, whereas complex 2 provided bis(mu-oxo)dicopper(III) complex 2-oxo. On the other hand, copper(II) complex 3 was reduced to the corresponding copper(I) complex 3(red). On the basis of the H(2)O(2)-reactivity together with the X-ray structures and the redox potentials of the copper(II) complexes, the substituent effects of 6-Ph are discussed in detail.  相似文献   

11.
The heterocyclization of divinyl sulfide with N-monoalkyl- and N-monoarylthioureas and 2-vinyl propen-1-yl sulfide and di(propen-1-yl) sulfide with thiourea in the presence of equimolar amounts of inorganic acids leads to new nitrogen heterocycles 2H,6H-2,6-dialkyl-4-alkylamino- and 2H,6H-2,6-dialkyl-4-imino-5-N-phenyl-1,3,5-dithiazines in salt form. The action of bases on the diathiazine salts gives the corresponding 1,3,5-dithiazines. These heterocycles were found more sensitive to the action of nucleophiles causing ring opening than 1,3,5-dithiazines unsubstituted at the nitrogen atom.For 14, see [1].Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 697–703, May, 1986.  相似文献   

12.
The reaction of ScCl(3)(THF)(3) or YCl(3) in a 1:1 molar ratio under reflux for 8 h with [{Li(bdmpza)(H(2)O)}(4)] [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate], [{Li(bdmpzdta)(H(2)O)}(4)] [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate], and (Hbdmpze) [bdmpze = 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide] affords the corresponding complexes [MCl(2)(kappa(3)-bdmpzx)(THF)] (x = a, M = Sc (1), Y (2); x = dta, M = Sc (3), Y (4); x = e, M = Sc (5), Y (6)). However, when the reaction was carried out for 1 h under reflux between ScCl(3)(THF)(3) and [{Li(bdmpzdta)(H(2)O)}(4)], a new anionic complex [Li(THF)(4)][ScCl(3)(kappa(3)-bdmpzdta)] (7) was obtained. Reaction of [{Li(bdmpza)(H(2)O)}(4)] with YCl(3) in a 2:1 molar ratio under reflux for 8 h gave the complex [YCl(kappa(3)-bdmpza)(2)] (8). The same reaction, but with the lithium compound [{Li(bdmpzdta)(H(2)O)}(4)], led to the formation of an anionic complex [Li(THF)(4)][YCl(3)(kappa(3)-bdmpzdta)] (9). The X-ray crystal structures of 7 and 9 were established. Finally, the addition of 1 equiv of [{Li(bdmpza)(H(2)O)}(4)] or [{Li(bdmpzdta)(H(2)O)}(4)] to a solution of YCl(3) in THF under reflux, followed by the addition of 1 equiv of 1,10-phenanthroline, resulted in the formation of the corresponding complexes [YCl(2)(kappa(3)-bdmpzx)(phen)] (x = a (10), x = dta (11)). These complexes are the first examples of group 3 metals stabilized by heteroscorpionate ligands. In addition, we have explored the reactivity of some of these complexes with alcohols and amides. For example, the direct reaction of [YCl(2)(kappa(3)-bdmpza)(THF)] (2) with several alcohols gave the alkoxide complexes [YCl(kappa(3)-bdmpza)(OR)] (R = Et (12), iPr (13)). Finally, the reaction between [ScCl(2)(kappa(3)-bdmpzdta)(THF)] (3) or [Li(THF)(4)][ScCl(3)(kappa(3)-bdmpzdta)] (7) and LiN(SiMe(3))(2).Et(2)O in 1:1 and 1:2 molar ratios gave rise to the complexes [ScCl(kappa(3)-bdmpzdta){N(SiMe(3))(2)}] (14) and [Sc(kappa(3)-bdmpzdta){N(SiMe(3))(2)}(2)] (15), respectively.  相似文献   

13.
Pseudo-tetrablock copolymers comprised of ethylene and 5-norbomen-2-yl acetate (1), were synthesized using the initiator system (L(i)Pr2)Ni(eta1-CH2Ph)(PMe3)(2)[(L(i)Pr2) = N-(2,6-diisopropylphenyl)-2-(2,6-diisopropylphenylimino)propanamide] and 2.5 equivalents of Ni(COD)2 [bis(1,5-cyclooctadiene) nickel.  相似文献   

14.
A new imidazolidine-bridged bis(aryloxido) ligand precursor (H(2)L) [H(2)L = 2,2'-(imidazolidine-1,3-diylbis(methylene))bis(4-(1,1,3,3-tetramethylbutyl-2-yl)phenol)] was prepared in a relatively high yield (~60%) via a single-step Mannich condensation of 4-(1,1,3,3-tetramethylbutyl)phenol, ethylenediamine and paraformaldehyde at 2:1:3 molar ratio and characterized by chemical and physical techniques including X-ray crystallography. Reactions of H(2)L with [VO(OEt)(3)] at 1:1 and 1:2 molar ratios in toluene afforded [V(L-κ(3)O,N,N,O)(O)(OEt)] (1) and [V(2)(μ-L-κ(4)O,N,N,O)(μ-OEt)(2)(O)(2)(OEt)(2)] (2), respectively. Alcoholysis of 1 with EtOH enables elimination of one molecule of H(2)L and the formation of 2. Compounds 1 and 2 were characterized by IR and NMR spectroscopy as well as ES-MS experiments. The definitive molecular structure of 2 was provided by a single-crystal analysis and revealed its dinuclear nature, featuring two octahedral vanadium centres bridged by both OEt groups and the L ligand. The (51)V, (1)H and (13)C NMR spectra as well as ES-MS showed that 2 does not stay intact in solution and undergoes dissociation to give 1 and [VO(OEt)(3)].  相似文献   

15.
The self assembly of (bis(1-methyl-imidazol-2-yl)methyl)(1-methyl-4-nitroimidazol-2-yl)methyl)amine and boric acid results in a supramolecular structure containing bundled antiparallel imidazole-boric acid helices and boric acid filled one-dimensional channels.  相似文献   

16.
A series of homoleptic complexes of hexacoordinate cobalt(II) and copper(II) complexes with 3,5-disubstituted homo- and heteroscorpionate tris(pyrazolyl)borate anionic ligands (Tp′) were synthesized, i.e. bis[hydrotris(3-phenyl,5-methylpyrazol-1-yl)borato]cobalt(II), bis[hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3-methyl,5-phenylpyrazol-1-yl)borato]cobalt(II) and bis[hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3-methyl,5-phenylpyrazol-1-yl)borato]copper(II) and their structures were elucidated crystallographically. The complexes were also formed spontaneously during attempted metathesis of the corresponding Tp′M(NCS) complexes into Tp′M(OOCCH(OH)CH3) complexes. In the case of the analogous conversion applied for the thiocyanato [hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3,5-dimethylpyrazol-1-yl)boratocobalt(II) complex with sodium carboxylates (lactate, pyruvate and 2-hydroxybutyrate), the cross-transfer of pyrazolyl residues between starting anionic ligands was observed resulting in formation of bis-ligand homo- and heteroleptic Tp′CoTp″ complexes, where Tp′, Tp″ were tris(pyrazolyl)borates composed of n 3(5)-phenyl,5(3)-methylpyrazolyl and (3−n) 3,5-dimethylpyrazolyl residues (n=0–3) identified by mass spectrometry. Metathesis of thiocyanate in thiocyanato hydrotris(3-phenyl,5-methylpyrazol-1-yl)boratocobalt(II) into pyruvate led to the isolation of stable the pyruvato hydrotris(3-phenyl,5-methylpyrazol-1-yl)boratocobalt(II) complex, the structure of which was determined crystallographically. The Tp′ ligands are η3 coordinated to metal ions in every case, whereas the pyruvate anion is coordinated through carboxylate and carbonyl oxygen atoms to the cobalt center. Two rotational isomers distinguishable by 1H NMR spectroscopy for the hexacoordinate bis[hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3-methyl,5-phenylpyrazol-1-yl)borato]cobalt(II) complex were detected in solution.  相似文献   

17.
The manganese compounds [Mn(bpia)(OAc)(OCH(3))](PF(6)) (1), [Mn(bipa)(OAc)(OCH(3))](PF(6)) (2), [Mn(bpia)(Cl)(2)](ClO(4)) (3), [Mn(bipa)(Cl)(2)](ClO(4)) (4), [Mn(Hmimppa)(Cl)(2)] x CH(3)OH (5), and [Mn(mimppa)(TCC)] x 2CHCl(3) (6) (bpia = bis(picolyl)(N-methylimidazole-2-yl)amine; bipa = bis(N-methylimidazole-2-yl)(picolyl)amine; Hmimppa = ((1-methylimidazole-2-yl)methyl)((2-pyridyl)methyl)(2-hydroxyphenyl)amine; TCC = tetrachlorocatechol) were synthesized and characterized by various techniques such as X-ray crystallography, mass spectrometry, IR, EPR, and UV/vis spectroscopy, cyclic voltammetry, and elemental analysis. 1 and 2 crystallize in the triclinic space group Ponemacr; (No. 2), 4 and 6 crystallize in the monoclinic space group P2(1)/n (No. 14), and 5 crystallizes in the orthorhombic space group Pna2(1). Complexes 1-4 are structurally related to the proposed active site of the manganese-dependent extradiol-cleaving catechol dioxygenase exhibiting an N(4)O(2) donor set (1 and 2) or N(4)Cl(2) donor set (3 and 4). Cyclic voltammetric data show that the substitution of oxygen donor atoms with chloride causes a shift of redox potentials to more positive values. These compounds show high catalytic activity regarding the oxidation of 3,5-di-tert-butylcatechol to 3,5-di-tert-butylquinone exhibiting saturation kinetics at high substrate concentrations. The turnover numbers k(cat) = (86 +/- 7) h(-1) (1), k(cat) = (101 +/- 4) h(-1) (2), k(cat) = (230 +/- 4) h(-1) (3), and k(cat) = (130 +/- 4) h(-1) (4) were determined from the double reciprocal Lineweaver-Burk plot. Compounds 5 and 6 can be regarded as structural and electronic Mn analogues for substituted forms of Fe-containing intradiol-cleaving catechol dioxygenases. To our knowledge 5 is the first mononuclear Mn(II) compound featuring an N(3)OCl(2) donor set.  相似文献   

18.
A new approach has been developed to the synthesis of dialkyl(diaryl)(2-methyl-4-oxopent-2-yl)-phosphine oxides that are structural analogs of the drug dimephosphon. This approach is based on the reaction of 2-chloro-3,3,5-trimethyl-3H-1,2λ5-oxaphosphole 2-oxide with Grignard compounds, and it ensures high yields of the target products. The structure of bis(2-methoxyphenyl)(2-methyl-4-oxopent-2-yl)phosphine oxide was determined by X-ray analysis. (2-Methyl-4-oxopent-2-yl)dipropylphosphine oxide with magnesium bromide formed a 4: 1 complex whose structure was also determined by X-ray analysis.  相似文献   

19.
The lithium salt (L)Li(THF) (L- = bis(3,5-di-tertbutylpyrazol-1-yl)-1-CH2NAr, Ar = 2,6-iPr2C6H3) can be readily prepared from lithium bis(3,5-di-tertbutylpyrazol-1-yl)methide and the N-methyleneaniline H2C=NAr. This N,N,N'-heteroscorpionate lithium reagent can be transmetalated with Tl(OTf), FeCl2(THF)(1.5), and CoCl2 to yield the (L)Tl, (L)FeCl, and (L)CoCl complexes, respectively. Single crystal structural data for compounds (L)Li(THF), (L)Tl, (L)FeCl, and (L)CoCl reveal in each case the hapticity of the sterically demanding, monoanionic L- ligand to be kappa3-N3.  相似文献   

20.
The dicopper(II) complex [Cu(2)(L)](4+) (L = alpha,alpha'-bis[bis[2-(1'-methyl-2'-benzimidazolyl)ethyl]amino]-m-xylene) reacts with hydrogen peroxide to give the dicopper(II)-hydroquinone complex in which the xylyl ring of the ligand has undergone a double hydroxylation reaction at ring positions 2 and 5. The dihydroxylated ligand 2,6-bis([bis[2-(3-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)benzene-1,4-diol was isolated by decomposition of the product complex. The incorporation of two oxygen atoms from H(2)O(2) into the ligand was confirmed by isotope labeling studies using H(2)(18)O(2). The pathway of the unusual double hydroxylation was investigated by preparing the two isomeric phenolic derivatives of L, namely 3,5-bis([bis[2-(1-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)phenol (6) and 2,6-bis([bis[2-(1-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)phenol (7), carrying the hydroxyl group in one of the two positions where L is hydroxylated. The dicopper(II) complexes prepared with the new ligands 6 and 7 and containing bridging micro-phenoxo moieties are inactive in the hydroxylation. Though, the dicopper(II) complex 3 derived from 6 and containing a protonated phenol is rapidly hydroxylated by H(2)O(2) and represents the first product formed in the hydroxylation of [Cu(2)(L)](4+). Kinetic studies performed on the reactions of [Cu(2)(L)](4+) and 3 with H(2)O(2) show that the second hydroxylation is faster than the first one at room temperature (0.13 +/- 0.05 s(-1) vs 5.0(+/-0.1) x 10(-3) s(-1)) and both are intramolecular processes. However, the two reactions exhibit different activation parameters (Delta H++ = 39.1 +/- 0.9 kJ mol(-1) and Delta S++ = -115.7 +/- 2.4 J K(-1) mol(-1) for the first hydroxylation; Delta H++ = 77.8 +/- 1.6 kJ mol(-1) and Delta S++ = -14.0 +/- 0.4 J K(-1) mol(-1) for the second hydroxylation). By studying the reaction between [Cu(2)(L)](4+) and H(2)O(2) at low temperature, we were able to characterize the intermediate eta(1):eta(1)-hydroperoxodicopper(II) adduct active in the first hydroxylation step, [Cu(2)(L)(OOH)](3+) [lambda(max) = 342 (epsilon 12,000), 444 (epsilon 1200), and 610 nm (epsilon 800 M(-1)cm(-1)); broad EPR signal in frozen solution indicative of magnetically coupled Cu(II) centers].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号