首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
The effect of electron beam irradiation on the structural and optical properties of Makrofol solid state nuclear track detector (SSNTD) was investigated. Samples from Makrofol detector were irradiated with electron beam with doses at levels between 10 and 400 kGy. Structural and optical property studies using X-ray diffraction, FTIR spectroscopy, color difference measurements and electron paramagnetic resonance were performed on non-irradiated and irradiated Makrofol samples. The transmission of these samples in the wavelength range 200–2500 nm, as well as any color changes, was studied. A characteristic absorption bands with different intensities was observed. Using the transmission data, both the tristimulus and the Commission Internationale de l’Eclairage (CIE) LAB coordinate values were calculated. In addition, the color differences between the non-irradiated sample and those irradiated with different doses were calculated. The results indicate that the Makrofol detector is a material that does not have a high resistance to degradation, and its tendency to crosslinking is much lower than that of several other SSNTDs.  相似文献   

3.
PM-355 is a class of polymeric solid-state nuclear track detectors which has a lot of applications in several radiation detection fields. Samples from sheets of PM-355 have been exposed to infrared (IR) laser fluences ranging from 1 to 12.8?J/cm2. The effect of IR laser radiation on the structural properties of PM-355 has been investigated using X-ray diffraction and Fourier transform infrared spectroscopy. The results indicate that the samples exhibit chain scission under the effect of laser irradiation up to 4.2?J/cm2, thus producing free radicals that led to the formation of new bonds started and continued until 12.8?J/cm2. This reduces the ordering structure, giving the PM-355 polymer more resilience. In addition, the laser irradiation at the fluence range 4.2–12.8?J/cm2 led to a more compact structure of PM-355, which resulted in an improvement in its isotropic nature with an increase in Vickers hardness and refractive index. Further, the color changes due to laser irradiation were computed using the transmission data in the wavelength range of 370–780?nm. It is found that the color intensity, which is the color difference between the irradiated samples and the non-irradiated one, increases with increasing the laser fluence, largely depending on the proportions of the blue color component.  相似文献   

4.
《Radiation measurements》2004,38(2):167-172
The effect of gamma irradiation on the electrical, molecular and structural properties of copolymers of methacrylic esters and olefins, PM-555 solid-state nuclear track detector was investigated. DC conductivity measurements were studied in the temperature range 293–417K using solid-state samples of the PM-555 polymer. These samples were irradiated with gamma doses in the range 5–63kGy. Furthermore, the activation energy was measured, at various temperatures, as a function of the gamma dose. It was found that many changes in electrical resistance of PM-555 polymer could be produced by gamma irradiation via the degradation mechanism. Also, the gamma dose gives an advantage for the increasing correlation between the DC conductivity and the number and mobility of the charge carriers created by the ionizing effect of gamma radiation. Moreover, solutions of different loadings (0.2%, 0.4%, 0.6% and 0.8%) were prepared from the irradiated and non irradiated sheets using pure chloroform as a solvent. The effect of both temperature and gamma dose on the intrinsic viscosity of the liquid samples, as a measure of the mean molecular mass of the PM-555 polymer, were studied. In addition, structural and optical property studies using X-ray diffraction and refractive index measurements were performed on all irradiated and non irradiated PM-555 samples. The results indicate that both the degree of ordering or disordering and the anisotropic character of the PM-555 polymer are dependent on the gamma dose.  相似文献   

5.
Samples of CR-39, PM-355, and PM-500 plastic detectors were irradiated with carbon ions of energy ranging from 0.9 MeV to 14.7 MeV. After the irradiation the detector samples were etched for a period from 2 hrs to 10 hrs. Dependence of track diameters on the ion energy values for different etching times, and dependence of VT/VB as a function of incident carbon-ion energy, are presented.  相似文献   

6.
Poly(vinyl alcohol) (PVA) polymer was prepared using the casting technique. The obtained PVA thin films have been irradiated with electron beam doses ranging from 20 to 300 kGy. The resultant effect of electron beam irradiation on the structural properties of PVA has been investigated using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), while the thermal properties have been investigated using thermo-gravimetric analysis and differential thermal analysis (DTA). The onset temperature of decomposition T 0 and activation energy of thermal decomposition E a were calculated, results indicate that the PVA thin film decomposes in one main weight loss stage. Also, the electron beam irradiation in dose range 95–210 kGy led to a more compact structure of the PVA polymer, which resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition. The variation of transition temperatures with electron beam dose has been determined using DTA. The PVA thermograms were characterized by the appearance of an endothermic peak due to melting. In addition, the transmission of the PVA samples and any color changes were studied. The color intensity Δ E was greatly increased with increasing electron beam dose, and was accompanied by a significant increase in the blue color component.  相似文献   

7.
Samples made of the CR-39 and PM-355 plastic nuclear track detectors (NTDs) as well as of the CN films were irradiated with quasi-monoenergetic beams of protons, alphas, N+-, and O+-ions produced by various accelerators. For different samples an energy value of the particle beams was changed from several hundreds keV to 3 or 4.5 MeV. After irradiation the detector samples were etched chemically under controlled conditions during periods lasting from 2 hrs to 20 hrs. Every 2 hrs track diameters were measured by means of an optical microscope. Differences in the crater diameters in the detectors etched in steps, and those etched continously, have been found to be smaller than 10 percent. The paper results detailed calibration diagrams showing a dependence of track diameters on the ion energy value for different etching times.  相似文献   

8.
This paper describes calibration studies of solid state nuclear track detectors (SSNTDs) of he CR-39/PM-355 type. A dozen or so PM-355 detector samples were cut out from detector sheets delivered at different times and were irradiated with mono-energetic protons, deurerons and helium ions of energy ranging up to a few MeV. After that, the samples were etched and track opening diameters were determined as a function of particle energy and detector etching time. These studies were motivated by the application of the detectors in fusion experiments to measure energetic ions which escape high-temperature plasmas. The calibration diagrams obtained enable us to compare the relative sensitivities of detectors from different batches and to use these detectors in an optimal way.  相似文献   

9.
Samples from Cellulose triacetate (CTA) sheets were irradiated with electron beam in the dose range 10–200 kGy. Non-isothermal studies were carried out using thermogravimetric analysis (TGA) to obtain the activation energy of thermal decomposition for CTA polymer. The CTA samples decompose in one main break down stage. The results indicate that the irradiation by electron beam in the dose range 80–200 kGy increases the thermal stability of the polymer samples. Also, the variation of melting temperatures with the electron dose has been determined using differential thermal analysis (DTA). The CTA polymer is characterized by the appearance of one endothermic peak due to melting. It is found that the irradiation in the dose range 10–80 kGy causes defects generation that splits the crystals depressing the melting temperature, while at higher doses (80–200 kGy), the thickness of crystalline structure (lamellae) is increased, thus the melting temperature increases. In addition, the transmission of these samples in the wavelength range 200–2500 nm, as well as any color changes, were studied. The color intensity ΔE* was greatly increased on increasing the electron beam dose, and accompanied by a significant increase in the blue color component.   相似文献   

10.
钟勉  杨亮  任玮  向霞  刘翔  练友运  徐世珍  郭德成  郑万国  袁晓东 《物理学报》2014,63(24):246103-246103
研究了不同剂量的60 kW高功率脉冲电子束辐照对高纯熔石英玻璃的微观结构、光学性能和激光损伤特性的影响规律. 光学显微图像表明, 辐照后熔石英样品由于热效应导致表面破裂, 裂纹密度和尺寸随辐照剂量增加而增大, 采用原子力显微镜分析表面裂纹的微观形貌, 裂纹宽度约1 um, 同时样品表面分布着大量尺寸约0.1–1μm的碎片颗粒. 吸收光谱测试表明, 所有样品均在394 nm处出现微弱的吸收峰, 吸收强度随着电子束辐照剂量增大呈现先增加后减小的趋势. 荧光光谱测试发现辐照前后样品均有3个荧光带, 分别位于460, 494和520 nm, 荧光强度随辐照剂量的变化趋势与吸收光谱一致. 利用355 nm激光研究了不同剂量电子束辐照对熔石英激光损伤阈值的影响, 结果表明熔石英的损伤阈值随着辐照剂量的增加而降低. 在剂量较低时, 导致熔石英激光损伤阈值下降的原因主要是色心缺陷; 剂量较高时, 导致损伤阈值降低的原因主要是样品表面产生的大量微裂纹和碎片颗粒对激光的调制和吸收. 关键词: 熔石英 电子束辐照 色心 激光损伤阈值  相似文献   

11.
A study of the effect of gamma and laser irradiation on the color changes of polyallyl diglycol (CR-39) solid-state nuclear track detector was performed. CR-39 detector samples were classified into two main groups. The first group was irradiated with gamma doses at levels between 20 and 300 kGy, whereas the second group was exposed to infrared laser radiation with energy fluences at levels between 0.71 and 8.53 J/cm2. The transmission of these samples in the wavelength range 300–2500 nm, as well as any color changes, was studied. Using the transmission data, both the tristimulus and the coordinate values of the Commission Internationale de l'Eclairage (CIE) LAB were calculated. Also, the color differences between the non-irradiated samples and those irradiated with different gamma or laser doses were calculated. The results indicate that the CR-39 detector acquires color changes under gamma or laser irradiation, but it has more response to color changes by gamma irradiation. In addition, structural property studies using infrared spectroscopy were performed. The results indicate that the irradiation of a CR-39 detector with gamma or laser radiations causes the cleavage of the carbonate linkage that can be attributed to the ?H abstraction from the backbone of the polymer, associated with the formation of CO2 and ?OH with varying intensities.  相似文献   

12.
Samples from sheets of the polymeric material PM-355 have been exposed to X-rays from a 50 kV X-ray tube in the dose range of 10–300 kGy. The resultant effect of X-ray irradiation on the structural properties of PM-355 has been investigated using different techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Vickers hardness and refractive index measurements. The results indicate that the X-ray irradiation of PM-355 in the dose range of 10–20 kGy causes initially chain scission. Above 20 and up to 100 kGy, the active free radicals produced from scission contribute to chemical reactions that lead to the crosslinking. Thus, the X-ray irradiation in the dose range of 20–100 kGy leads to a more compact structure of the PM-355 polymer, resulting in an enhancement of its Vickers hardness and refractive index. Moreover, the irradiation in the dose range of 100–300 kGy leads to the predominance of the degradation. This degradation is reported by FTIR spectroscopy and enhances the degree of ordering in the degraded samples as revealed by XRD technique. Additionally, it decreases both the Vickers hardness and refractive index of the PM-355 samples.  相似文献   

13.
The Solid State Nuclear Track Detectors PM-355 type were irradiated with helium and sulphur ions with different energies. To develop ion tracks the PM-355 detectors have been chemically etched under the standard conditions. Scanning electron microscopy (SEM) technique was used for observation of surfaces and fractures for determination of diameter and depth of the developed tracks. Shapes of the tracks induced by the projectiles are also presented.  相似文献   

14.
研究了不同能量的电子束辐照对GaN基发光二极管(Light emitting diode,LED)发光性能的影响。利用实验室提供的电子束模拟空间电子辐射,对GaN基LED外延片进行1.5,3.0,4.5 MeV电子束辐照实验,并应用光致发光(Photoluminescence,PL)谱测试发光性能。结果表明:在1.5 MeV电子束辐照下,采用10 kGy剂量辐照时,LED的发光强度增加约25%;而在100 kGy剂量辐照时,LED的发光强度降低约16%。3 MeV的电子束辐照可使原来色纯度不高的LED的色纯度变好,而更高能量的辐照将会引起器件失效。  相似文献   

15.
Samples from polycarbonate/poly (butylene terephthalate) (PC/PBT) blends film have been irradiated using different fluences (1?×?1015– 5?×?1017 H+/cm2) of 1?MeV protons at the University of Surrey Ion Beam Center, UK. The structural modi?cations in the proton irradiated samples have been studied as a function of fluence using different characterization techniques such as X-ray diffraction and UV spectroscopy. The results indicate that the proton irradiation reduces the optical energy gap that could be attributed to the increase in structural disorder of the irradiated samples due to crosslinking. Furthermore, the color intensity ΔE, which is the color difference between the non-irradiated sample and those irradiated with different proton fluences, increased with increasing the proton fluence up to 5?×?1017 H+/cm2, convoyed by an increase in the red and yellow color components. In addition, the resultant effect of proton irradiation on the thermal properties of the PC/PBT samples has been investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). It is found that the PC/PBT decomposes in one weight loss stage. Also, the variation of transition temperatures with proton fluence has been determined using DSC. The PC/PBT thermograms were characterized by the appearance of two endothermic peaks due to the glass transition and melting temperatures. The melting temperature of the polymer, Tm, was investigated to probe the crystalline domains of the polymer, since the proton irradiation destroys the crystalline structure so reducing the melting temperature.  相似文献   

16.
Highly stable F2 color centers are very efficiently produced in lithium fluoride (LiF) by electron beam irradiation at room temperature. We have fabricated optical microcavities in which the active medium is a low-energy electron beam irradiated LiF film, whose optical thickness is comparable with the peak wavelength (~668nm) of the F2 broad photoluminescence band. By selecting the proper electron beam energy, one can control the F2 color center depth distribution. This distribution influences the photoemission angular distribution of the microcavity, whose resonance properties are determined by the coupling of the depth profile of the defects with the pump electromagnetic field and microcavity modes.  相似文献   

17.
The effects of N-phenylmaleimide (NPMI) concentration and gamma dose on the molecular and optical properties of poly(vinyl chloride) (PVC) have been studied. The results reveal an improvement in the intrinsic viscosity of PVC in the presence of an organic material. The effective concentration that enhanced the intrinsic viscosity, from 1.02 to 1.28, was found to be 10 mmol NPMI per 100 g PVC. The effect of gamma irradiation on the PVC polymer stabilized with this concentration of NPMI has been studied. Samples from the 0.01 g NPMI/1 g PVC were irradiated with gamma doses in the range 5–180 kGy. It is found that irradiation in the dose range 120–180 kGy enhances the intrinsic viscosity of the samples. In addition, the transmission of these irradiated samples in the wavelength range 200–2500 nm, as well as any color changes was studied. The color intensity (Δ E) was greatly increased with the increasing gamma dose, and was accompanied by darkness with a significant increase in the yellow color component.  相似文献   

18.
The effects of ion beam irradiation on optical, chemical and electrical properties of nitroso substituted polyaniline, polynitrosoaniline (N-PANI) have been investigated. N-PANI was irradiated with 100 MeV 28Si ions at different ion-fluences. The pristine and irradiated polymer samples were characterized by FT-IR, UV–visible spectroscopic techniques. The electrical conductivity studies were conducted on polymer samples. A significant change in optical band gap and room temperature electrical conductivity was observed in polymer samples after irradiation. The solubility of the polymer samples has also been tested in 1-methyl-2-pyrrolidone (NMP).  相似文献   

19.
A comparative study of the effect of gamma and laser irradiation on the thermal, optical and structural properties of the CR-39 diglycol carbonate solid state nuclear track detector has been carried out. Samples from CR-39 polymer were classified into two main groups: the first group was irradiated by gamma rays with doses at levels between 20 and 300 kGy, whereas the second group was exposed to infrared laser radiation with energy fluences at levels between 0.71 and 8.53 J/cm2. Non-isothermal studies were carried out using thermogravimetry, differential thermogravimetry and differential thermal analysis to obtain activation energy of decomposition and transition temperatures for the non-irradiated and all irradiated CR-39 samples. In addition, optical and structural property studies were performed on non-irradiated and irradiated CR-39 samples using refractive index and X-ray diffraction measurements. Variation in the onset temperature of decomposition T o, activation energy of decomposition E a, melting temperature T m, refractive index n and the mass fraction of the amorphous phase after gamma and laser irradiation were studied.

It was found that many changes in the thermal, optical and structural properties of the CR-39 polymer could be produced by gamma irradiation via degradation and cross-linking mechanisms. Also, the gamma dose has an advantage of increasing the correlation between thermal stability of the CR-39 polymer and bond formation created by the ionizing effect of gamma radiation. On the other hand, higher laser-energy fluences in the range 4.27–8.53 J/cm2 decrease the melting temperature of the CR-39 polymer and this is most suitable for applications requiring molding of the polymer at lower temperatures.  相似文献   

20.
ABSTRACT

Samples from sheets of the polymeric material Makrofol LS 1–1 have been exposed to gamma radiation in the dose range 10–250?kGy. The modifications induced in Makrofol samples due to gamma irradiation have been studied through different characterization techniques such as intrinsic viscosity as a measure of the average molecular mass, Fourier Transform Infrared spectroscopy FTIR, refractive index and color difference studies. The results indicate that the crosslinking dominates at the dose range 50–250?kGy. The crosslinking reported by viscosity measurements is supported by the trend of the function groups present in the sample with the gamma dose. Also, the increase in intrinsic viscosity indicating an increase in the average molecular mass was associated with an increase in the refractive index. Additionally, the non-irradiated Makrofol samples showed significant color sensitivity towards gamma irradiation. The color intensity ΔE, which is the color difference between the non-irradiated sample and those irradiated with different gamma doses, increased (0–5.56) with increasing the dose up to 250?kGy, convoyed by an increase in the red and yellow color components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号