首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

The defects in n-GaP crystals irradiated by 2.3 MeV electrons up to 1 × 1019 cm?2 at RT were studied by means of positron annihilation (angular correlation) and electrical property measurements. It was found that positrons are trapped in some radiation-induced vacancy-type defects (acceptors) but that the effect saturates at high electron fluences (D1 × 1018 cm?2). The trapping rate in irradiated samples increases with temperature in the range 77–300 K. Post-irradiation isochronal annealing reveals the positron traps clustering at about 200–280°C. All positron sensitive radiation-induced defects disappear upon annealing up to 500°C.  相似文献   

3.
Backscattering yields of 1.5 MeV?He+ ions and low temperature photoluminescence (PL) spectra were measured in GaP crystals implanted with 200 keV?N+ ions as functions of ion-dose, temperature during implantation and annealing temperature after implantation. Backscattering results indicate that hot implantation at 500°C greatly reduces radiation damage. The PL intensities of NN lines become maximum in the sample implanted with N+ ions of 3 × 1014cm?2 at 500°C, and annealed at 1000°C for 1 hr with aluminum glass. The PL intensity is comparable to that of the nitrogen-doped sample during liquid phase epitaxy which is widely accepted as the best method of introducing nitrogen into GaP crystals. In the case of 500°C—hot implantation, the radiation damage produced during implantation is annealed out at 700 ~ 800°C and the implanted nitrogen substitutes for the phosphorous sites after annealing at 900 ~ 1000°C. Some kinds of defects or strains remain around the NN centers even in implanted samples with a maximum PL efficiency. These defects or strains don't seem to reduce the PL efficiency. In the case of room temperature implantation, PL efficiency decreases to one-hundredth or one-thousandth due to the formation of the non-crystalline state compared with hot implantation.  相似文献   

4.
Room temperature ferromagnetism was observed in Cr-implanted ZnO nanowires annealed at 500, 600, and 700 °C. The implantation dose for Cr ions was 1×1016 cm?2, while the implantation energies were 100 keV. Except for ZnO (100), (002), and (200) orientations, no extra diffraction peaks from Cr-related secondary phase or impurities were observed. With the increasing of annealing temperatures, the intensity of the peaks increased while the FWHM values decreased. The Cr 2p1/2 and 2p3/2 peaks, with a binding energy difference of 10.6 eV, appear at 586.3 and 575.7 eV, can be attributed to Cr3+ in ZnO nanowires. For the Cr-implanted ZnO nanowires without annealing, the band energy emission disappears and the defect related emission with wavelength of 500–700 nm dominates, which can be attributed to defects introduced by implantation. Cr-implanted ZnO nanowires annealed at 500 °C show a saturation magnetization value of over 11.4×10?5 emu and a positive coercive field of 67 Oe. The origin of ferromagnetism behavior can be explained on the basis of electrons and defects that form bound magnetic polarons, which overlap to create a spin-split impurity band.  相似文献   

5.
Irradiation of congruently melting, nominally undoped lithium niobate crystals (LiNbO3) with high-energy, low-mass 3He ions, which are transmitted through the crystal, causes large and stable changes of the refractive index. In the irradiated regions, the extraordinary index is increased whereas the ordinary index is diminished. The decay of these changes upon annealing treatments up to 400°C is investigated, exhibiting a strongly non-monoexponential decay behaviour. Long-term measurements of the refractive index changes yield no pattern erasure on a timescale of four years.  相似文献   

6.
Silicon carbide (SiC) single crystals with the 6H polytype structure were irradiated with 4.0-MeV Au ions at room temperature (RT) for increasing fluences ranging from 1?×?1012 to 2?×?1015 cm?2, corresponding to irradiation doses from ~0.03 to 5.3 displacements per atom (dpa). The damage build-up was studied by micro-Raman spectroscopy that shows a progressive amorphization by the decrease and broadening of 6H-SiC lattice phonon peaks and the related growth of bands assigned to Si–Si and C–C homonuclear bonds. A saturation of the lattice damage fraction deduced from Raman spectra is found for ~0.8?dpa (i.e. ion fluence of 3?×?1014 cm?2). This process is accompanied by an increase and saturation of the out-of-plane expansion (also for ~0.8?dpa), deduced from the step height at the sample surface, as measured by phase-shift interferometry. Isochronal thermal annealing experiments were then performed on partially amorphous (from 30 to 90%) and fully amorphous samples for temperatures from 200 °C up to 1500 °C under vacuum. Damage recovery and densification take place at the same annealing stage with an onset temperature of ~200 °C. Almost complete 6H polytype regrowth is found for partially amorphous samples (for doses lower than 0.8 dpa) at 1000 °C, whereas a residual damage and swelling remain for larger doses. In the latter case, these unrelaxed internal stresses give rise to an exfoliation process for higher annealing temperatures.  相似文献   

7.
Photovoltaic and diffusion fields in nominally pure single crystals of stoichiometric composition (R = Li/Nb = 1) grown in the presence of 6 wt% K2O flux (LiNbO3 stoich. K2O) in nominally pure single crystals of complementary composition (LiNbO3), complementary single crystals doped with Zn2+, Er3+ at wavelength of 476, 514.5, 530 nm are defined according to parameters of photo induced light scattering indicatrix. Photo induced changes of crystals’ refractive index are defined.  相似文献   

8.
We report on the defect properties of single-crystalline ZnO nanorods grown from solutions at temperatures below 90 °C. The nanorods can easily be doped by providing impurity precursors during growth. In the as-grown state the nanorods exhibit considerable lattice strain and distortions which compromise their electrical and optical properties. Upon annealing at moderate temperatures of <400 °C the lattice strain is converted into dislocation-type defects, and the dopant impurities become optically active. In the annealed state the near-bandgap photoluminescence quantum efficiency is improved more than 5 times and reaches ~16 % at room temperature. Thus with moderate annealing, interesting device applications become feasible for nanorods grown at T<90 °C.  相似文献   

9.
The thermal conductivity of LiF single crystals which where γ-irradiated in a Co60 -source at room temperature with doses ranging from 8.5 105 Rad to 3.6 108 Rad was measured in the temperature range from 60 mK to 100 K. The most heavily irradiated specimen was also measured after annealing treatments at temperatures between 260°C and 400°C. From a numerical analysis of the thermal conductivity data we derive the following interpretation of the thermal resistivity due to the radiation damage. The defects created are threefold: (a) F-centers which act as point defects, (b) small aggregates of point defects with a diameter of about 10 Å which are roughly thirty times less numerous than the F-centers (c) large scale aggregates containing several thousands of lattice sites which appear at irradiation doses ?107 Rad. Each of these defects acts on the thermal conductivity in a different temperature range and are identified as interstitial clusters through their characteristic behaviour during irradiation and subsequent annealing.  相似文献   

10.
Kuna Lakshun Naidu 《哲学杂志》2013,93(30):3431-3444
Chromium/silicon bilayers are deposited by sequential electron beam evaporation on quartz substrates. The bilayers consisting of Cr and Si layers of 50 and 400 nm thicknesses, respectively, are subjected to post-deposition annealing at temperatures from 200 to 700 °C. The thermal annealing results in the interdiffusion between Cr and Si, as evidenced by cross-section scanning electron micrographs and the line profiles obtained from energy-dispersive X-ray spectroscopy. It is inferred from the compositional line profiles that the films are a combination of silicon-rich oxide, chromium oxide and unreacted Cr up to 500 °C. Chromium disilicide forms at temperatures greater than 500 °C with decrease in chromium oxide content. The refractive index value and extinction coefficient values are 2.1 and 0.12 in the as-deposited case which increase to 3.5 and 0.24 at 400 °C. These values decrease to 2.1 and 0.12 at 500 °C. At the same temperatures, the band gap values are 2.21, 2.40 and 2.28, respectively. Thus, the refractive index, absorption coefficient and the optical band gap of the films peak at an annealing temperature of 400 °C and decrease thereafter. Significantly, this is accompanied by increase in Urbach energy which is an indication of increase in disorder in the system. There is decrease in Urbach energy as well as the optical constants at temperatures >400 °C.  相似文献   

11.
Photo-induced decrease in conductance after long light exposure has been observed for hydrogenated amorphous silicon (a-Si:H) npnp . doping-modulated superlattices showing large persistent photoconductivity (PPC). The initial increase in PPC is taken over by the decrease even to the negative PPC after long illumination. This light-induced, metastable conductance can be recovered completely by 160°C annealing, which is independent of exposure time. In particular, the metastable defects created in the p-layers are found to be annealed out at 100°C. The subband gap light exposure on the a-Si:H npnp. multilayers showing n-type conduction gives rise to the increase of conductance. On the contrary, the conductance of the multilayers having p-channel conduction decreases by IR exposure. These results strongly suggest the creation and annealing of dangling bonds by light-soaking and annealing in doping-modulated superlattices.  相似文献   

12.
Ruthenium (Ru) Schottky contacts and thin films on n-type 6H–SiC were fabricated and characterised by physical and electrical methods. The characterisation was done after annealing the samples in air at various temperatures. Rutherford backscattering spectroscopy (RBS) analysis of the thin films indicated the oxidation of Ru after annealing at a temperature of 400 °C, and interdiffusion of Ru and Si at the Ru–6H–SiC interface at 500 °C. XRD analysis of the thin films indicated the formation of RuO2 and RuSi in Ru–6H–SiC after annealing at a temperature of 600 °C. The formation of the oxide was also corroborated by Raman spectroscopy. The ideality factor of the Schottky barrier diodes (SBD) was seen to generally decrease with annealing temperature. The series resistance increased astronomically after annealing at 700 °C, which was an indication that the SBD had broken down. The failure mechanism of the SBD is attributed to deep inter-diffusions of Ru and Si at the Ru–6H–SiC interface as evidenced by the RBS of the thin films.  相似文献   

13.
Five KCl single crystals were irradiated at 4·6°K in the core of the Munich Nuclear Reactor for periods of 100 sec, 10 min, 1 hr or 10 hr, respectively. After irradiation the stored energy of the samples was measured in a differential-heat-flow calorimeter at two different heating rates: 0·29 and 1·1°K/min. At 0·29°K/min peaks of stored energy release were resolved at 21°K, near 27·5°K, at 32·5°K, at 42·5°K and near 50°K. An attempt was made to evaluate the corresponding activation energies using two different methods (see Table 1 in the text). The annealing stages at 21 and 32·5°K correspond to first order kinetics. The annealing stages at 42·5 and near 50°K are not of first order. A similar experiment was performed on KBr single crystals and is reported in the preceding paper. The results are compared with annealing studies on low temperature X-irradiated KCl and KBr crystals. From both our experiments it follows that also during reactor irradiation at 4·6°K ionization mechanisms of defect production should be responsible for the four observed low temperature recovery peaks; only defect recovery at higher temperatures may be at least partially explained by recombination of collision produced defects, i.e. the typical neutron irradiation effect as it takes place in metals.  相似文献   

14.
Annealing of silicon-carbon nanoparticles was performed in argon at atmospheric pressure to enable formation of silicon carbide nanomaterials and/or carbon structures. Three precursor powders with increasing crystallinity and annealing temperatures from 1,900 to 2,600 °C were used to gain information about the effect of precursor properties (e.g. amorphous vs. nanocrystalline, carbon content) and annealing temperature on the produced materials. Three structures were found after annealing, i.e. silicon carbide crystals, carbon sheets and spherical carbon particles. The produced SiC crystals consisted of several polytypes. Low annealing temperature and increasing crystallinity of the precursor promoted the formation of the 3C-SiC polytype. Raman analysis indicated the presence of single-layer, undoped graphene in the sheets. The spherical carbon particles consisted of curved carbon layers growing from the amorphous Si–C core and forming a ‘nanoflower’ with a diameter below 60 nm. To our knowledge, the formation of this kind of structures has not been reported previously. The core was visible in transmission electron microscopy analysis at the annealing temperature of 1,900 °C, decreased in size with increasing temperature and disappeared above an annealing temperature of 2,200 °C. With increasing crystallinity of the precursor material, fewer layers (~5 with the most crystalline precursor) were detected in the carbon nanoflowers. The method presented opens up the possibility to produce new carbon nanostructures whose properties can be controlled by changing the properties of the precursor material or by adjusting an annealing temperature.  相似文献   

15.
Radiation-induced defects are studied in cubic rhodium metal, using the local probe technique ‘Time differential perturbed angular correlation’ (TDPAC) at liquid N2 temperature. Isochronal annealing was done at 300, 1073 and 1473 K temperatures. The irradiated sample showed two quadrupole interaction frequencies at 1150 and 93 MHz. The low frequency disappeared at room-temperature annealing, which was assigned to In trapped at a vacancy, whereas the higher frequency remained up to high temperatures and was attributed to In trapped at Rh–C complexes in the Rh matrix.  相似文献   

16.
Thermoluminescence (TL) of nominally pure LiF crystals irradiated with gamma rays has been studied in connection with color centers (CCs) generated during ionizing irradiation. A close analysis of the experimental TL spectra unveiled the existence of 10 glow peaks (GPs) spanning from 100 to 450°C. The relatively well-resolved GPs up to 263°C are associated with F 3+, F 3, and F 2 CCs, while the remaining tangled ones are attributed to F and F-like CCs. A first-order kinetics approach is used to simulate the TL spectra, and the appropriate parameters of the carrier traps are obtained. A critical analysis of their values showed, on the one side, the usefulness of using pure crystals to understand their basic contributions to TL, and, on the other side, the possible existence of further weak GPs and the role still played by the residual amount of impurities.
The text was submitted by the authors in English.  相似文献   

17.
14 /cm2 dose of As ions followed by both isochronal and isothermal annealing. The elementary defects generated first during solid-phase epitaxial recovery of implantation-induced amorphous layers at temperatures of 550 °C and/or 600 °C are {311} defects 2–3 nm long. They are considered to be transformed into {111} and {100} defects after annealing at temperatures higher than 750 °C. These secondary defects show the opposite annealing behavior to the dissolution and growth by the difference of their depth positions at 800 °C. This phenomenon is explained by the diffusion of self-interstitials contained in defects. With regard to the formation and dissolution of defects, there is no significant difference between the effects of rapid thermal annealing (950 °C for 10 s) and furnace annealing (800 °C for 10 min). Received: 14 November 1997/Accepted: 16 November 1997  相似文献   

18.
Abstract

Oxide dispersion strengthened Fe14Cr and Fe14CrWTi alloys produced by mechanical alloying and hot isostatic pressing were subjected to isochronal annealing up to 1400 °C, and the evolution and thermal stability of the vacancy-type defects were investigated by positron annihilation spectroscopy (PAS). The results were compared to those from a non-oxide dispersion strengthened Fe14Cr alloy produced by following the same powder metallurgy route. The long lifetime component of the PAS revealed the existence of tridimensional vacancy clusters, or nanovoids, in all these alloys. Two recovery stages are found in the oxide dispersion strengthened alloys irrespective of the starting conditions of the samples. The first one starting at T > 750 °C is attributed to thermal shrinkage of large vacancy clusters, or voids. A strong increase in the intensity of the long lifetime after annealing at temperatures in the 800–1050 °C range indicates the development of new vacancy clusters. These defects appear to be unstable above 1050 °C, but some of them remain at temperatures as high as 1400 °C, at least for 90 min.  相似文献   

19.
The photoconductivity spectra of p-type silicon irradiated at ~15 °K with 1.2 MeV electrons were studied in the wavelength range from 1.2 to 5.5 μ at temperatures from 23 to 80 °K. The 3.9 μ photoconductivity band appears immediately after irradiation in all crystals already at low temperatures, giving further evidence that it is due to the divacancy formed directly during irradiation by electrons. Three main annealing stages of the photoconductivity have been observed; (a) below 160 °K, (b) 160–250 °K, and (c) 280–360 °K. A radiation-induced deep level at Ev , +(0.12±0.02 eV disappears upon annealing at stage b. The annealing behavior of the spectra depends strongly on the measuring temperature. The dependence of the spectra on chopper speed was also investigated.  相似文献   

20.
Abstract

Nominally pure and Dy-doped BaF2 crystals were investigated concerning their optical absorption (OA) and thermoluminescence (TL) properties. Peaks at 120—150 and 200°C were observed for a heating rate of 1.7°C/s. The TL response for γ-rays and the TL emission spectra were obtained for these peaks. Except for the purest crystal, all BaF2 crystals produced OA bands before irradiation typical of Ce3+ ions. After irradiation, Dy doped crystals showed bands due to Dy2+ ions. A nominally pure sample gave bands related to Ce2+ ions and photochromic centers of Ce3+ ions. and photochromic centres of Ce3+ ions. The correlation between some OA bands and TL peaks is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号