首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Bi4Ti3O12 (BIT) nanoparticles with a narrow average particle size distribution in the range of 11–46 nm was synthesized via a metal-organic polymeric precursor process. The crystallite size and lattice parameter of BIT were determined by XRD analysis. At annealing temperatures >550 °C, the orthorhombic BIT compound with lattice parameters a = 5.4489 Å, b = 5.4147 Å, and c = 32.8362 Å was formed while at lower annealing temperatures orthorhombicity was absent. Reaction proceeded via the formation of an intermediate phase at 500 °C with a stoichiometry close to Bi2Ti2O7. The particle size and the agglomerates of the primary particles have been confirmed by FESEM and TEM. The decomposition of the polymeric gel was ascertained in order to evaluate the crystallization process from TG-DSC analysis. Raman spectroscopy was used to investigate the lattice dynamics in BIT nanoparticles. In addition, investigation of the dependence of the visible emission band around the blue–green color emission on annealing temperatures and grain sizes showed that the effect of grain size plays important roles, and that oxygen vacancies may act as the radiative centers responsible for the observed visible emission band.  相似文献   

2.
The transition temperatures of Zr-Rh alloys with small amounts of Rh are essentially higher than the transition temperature of pure Zr. Rhodium is not dissolved in the Zr lattice. In the unannealed specimens Rh stabilizes the body centered cubic phase which has aT c of 6.4°K. After annealing an intermetallic compound is formed with aT c of about 12°K. This compound is also formed in the unannealed specimens at higher Rh content.  相似文献   

3.
For self-interstitial atom (SIA) clusters in various concentrated alloys, one-dimensional (1D) migration is induced by electron irradiation around 300 K. But at elevated temperatures, the 1D migration frequency decreases to less than one-tenth of that around 300 K in iron-based bcc alloys. In this study, we examined mechanisms of 1D migration at elevated temperatures using in situ observation of SUS316L and its model alloys with high-voltage electron microscopy. First, for elevated temperatures, we examined the effects of annealing and short-term electron irradiation of SIA clusters on their subsequent 1D migration. In annealed SUS316L, 1D migration was suppressed and then recovered by prolonged irradiation at 300 K. In high-purity model alloy Fe-18Cr-13Ni, annealing or irradiation had no effect. Addition of carbon or oxygen to the model alloy suppressed 1D migration after annealing. Manganese and silicon did not suppress 1D migration after annealing but after short-term electron irradiation. The suppression was attributable to the pinning of SIA clusters by segregated solute elements, and the recovery was to the dissolution of the segregation by interatomic mixing under electron irradiation. Next, we examined 1D migration of SIA clusters in SUS316L under continuous electron irradiation at elevated temperatures. The 1D migration frequency at 673 K was proportional to the irradiation intensity. It was as high as half of that at 300 K. We proposed that 1D migration is controlled by the competition of two effects: induction of 1D migration by interatomic mixing and suppression by solute segregation.  相似文献   

4.
Ruthenium (Ru) Schottky contacts and thin films on n-type 6H–SiC were fabricated and characterised by physical and electrical methods. The characterisation was done after annealing the samples in air at various temperatures. Rutherford backscattering spectroscopy (RBS) analysis of the thin films indicated the oxidation of Ru after annealing at a temperature of 400 °C, and interdiffusion of Ru and Si at the Ru–6H–SiC interface at 500 °C. XRD analysis of the thin films indicated the formation of RuO2 and RuSi in Ru–6H–SiC after annealing at a temperature of 600 °C. The formation of the oxide was also corroborated by Raman spectroscopy. The ideality factor of the Schottky barrier diodes (SBD) was seen to generally decrease with annealing temperature. The series resistance increased astronomically after annealing at 700 °C, which was an indication that the SBD had broken down. The failure mechanism of the SBD is attributed to deep inter-diffusions of Ru and Si at the Ru–6H–SiC interface as evidenced by the RBS of the thin films.  相似文献   

5.
The photoconductivity spectra of p-type silicon irradiated at ~15 °K with 1.2 MeV electrons were studied in the wavelength range from 1.2 to 5.5 μ at temperatures from 23 to 80 °K. The 3.9 μ photoconductivity band appears immediately after irradiation in all crystals already at low temperatures, giving further evidence that it is due to the divacancy formed directly during irradiation by electrons. Three main annealing stages of the photoconductivity have been observed; (a) below 160 °K, (b) 160–250 °K, and (c) 280–360 °K. A radiation-induced deep level at Ev , +(0.12±0.02 eV disappears upon annealing at stage b. The annealing behavior of the spectra depends strongly on the measuring temperature. The dependence of the spectra on chopper speed was also investigated.  相似文献   

6.
X-band EPR spectra on SiCN ceramics, doped with Fe(III) ions, annealed at 800 °C, 1000 °C, 1100 °C, 1285 °C, and 1400 °C have been simulated to understand better their magnetic properties, accompanied by new magnetization measurements in the temperature range of 5–400 K for zero-field cooling (ZFC) and field cooling (FC) at 100C. The EPR spectra reveal the presence of several kinds of Fe-containing nanoparticles with different magnetic properties. The maxima of the temperature variation of ZFC magnetization were exploited to estimate (i) the blocking temperature, which decreased with annealing temperature of the samples and (ii) the distribution of the size of Fe-containing nanoparticles in the various samples, which was found to become more uniform with increasing annealing temperature, implying that more homogenous magnetic SiCN/Fe composites can be fabricated by annealing at even higher temperatures than 1400 °C to be used as sensors. The hysteresis curves showed different behaviors above (superparamagnetic), below (ferromagnetic), and about (butterfly shape) the respective average blocking temperatures, 〈TB〉. An analysis of the coercive field dependence upon temperature reveals that it follows Stoner–Wohlfarth model for the SiCN/Fe samples annealed above 1100 °C, from which the blocking temperatures was also deduced.  相似文献   

7.
Local atomic configuration, phase composition and atomic intermixing in Fe-rich Fe1?xCrx and Fe1?xMox ribbons (x = 0.05, 0.10, 0.15), of potential interest for high-temperature applications and nuclear devices, are investigated in this study in relation to specific processing and annealing routes. The Fe-based thin ribbons have been prepared by induction melting, followed by melt spinning and further annealed in He at temperatures up to 1250 °C. The complex structural, compositional and atomic configuration characterisation has been performed by means of X-ray diffraction (XRD), transmission Mössbauer spectroscopy and differential scanning calorimetry (TG-DSC). The XRD analysis indicates the formation of the desired solid solutions with body-centred cubic (bcc) structure in the as-quenched state. The Mössbauer spectroscopy results have been analysed in terms of the two-shell model. The distribution of Cr/Mo atoms in the first two coordination spheres is not homogeneous, especially after annealing, as supported by the short-range order parameters. In addition, high-temperature annealing treatments give rise to oxidation of Fe (to haematite, maghemite and magnetite) at the surface of the ribbons. Fe1?xCrx alloys are structurally more stable than the Mo counterpart under annealing at 700 °C. Annealing at 1250 °C in He enhances drastically the Cr clustering around Fe nuclei.  相似文献   

8.
This study investigates the recovery of electric resistivity in pure iron, Fe–0.6Ni and Fe–1.5Mn as related to isochronal annealing following 1 MeV proton irradiation at lower temperature than 70 K, focusing on the relationship between solute atoms and irradiation defects. Both nickel and manganese prevent stage ID recovery, which corresponds to correlated recombination. Stage II recovery is also changed by the addition of a solute, which corresponds to the migration of small interstitial clusters. In both pure iron and Fe–0.6Ni, no evident difference was observed in the stage III region, which corresponds to the migration of vacancies. In contrast, two substages appeared in the Fe–1.5Mn at a higher temperature than stage IIIB appeared in pure iron. These substages are considered to represent the release of irradiation-induced defects, which was trapped by manganese.  相似文献   

9.
Magnetic properties and internal stresses of AlN(20 nm)/[CoPt(2 nm)/AlN(20 nm)]5 multilayer structure deposited at different substrate temperatures by dc magnetron sputtering have been studied. It is found that with increasing the substrate temperature from room temperature to 400 °C, in-plane magnetic anisotropy field of the film becomes smaller, and the out-of-plane magnetization becomes stronger. Especially when the film is deposited at substrate temperature of 400 °C, the out-of-plane magnetization becomes as strong as the in-plane magnetization. On the other hand, the total in-plane residual stress of the film changes gradually from compressive to tensile. The compressive intrinsic stress is generated during deposition process and decreases with increasing the substrate temperature. After annealing at high temperatures, the films show strong perpendicular magnetic anisotropy. With increasing the annealing temperature, the in-plane thermal stress also increases and becomes dominant, which is considered to result in the perpendicular magnetic anisotropy of the films.  相似文献   

10.
We have investigated the mechanosynthesis of gadolinium and yttrium iron garnets by high-energy ball-milling of α-Fe2O3 and Gd2O3 or α-Fe2O3 and Y2O3, respectively, followed by short thermal annealings conducted at moderate temperatures. The samples were characterized by X-ray diffraction and Mössbauer spectroscopy, in order to determine the influence of the milling time and annealing conditions on the final products. For as-milled samples of each rare-earth system, the results revealed the formation of perovskite phases, in relative amounts that depend on the milling time. The formation of garnet phases was observed in as-annealed samples treated at 1000°C for 2 h or 1100°C for 3 h, i.e., at very modest annealing requirements when compared with ordinary solid-state-reaction processes performed without previous high-energy milling. Also, the occurrence was verified of a milling time for which the relative amount of garnet phases formed by annealing was maximized. This time depends on the rare-earth composing the garnet phase and on the annealing temperature.  相似文献   

11.
Thin films of 2,9-Bis [2-(4-chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetrone (Ch-diisoQ) were prepared by thermal evaporation technique. Structural properties of these (as-prepared and annealed at 373, 423, 473 and 523 K) films were determined by X-ray diffraction and scanning electron microscopy, which showed that the grain sizes increasing by the annealing effect. The transmittance and reflectance of all Ch-diisoQ thin films were measured in the range 200–2500 nm. Some optical constants such as optical band gap (E g ), dispersion energy (E d ), single oscillator energy (E o ) and optical dielectric constant at a higher frequency (ε ) were calculated at different annealing temperatures. The optical band gap of the samples is decreased with the increase of annealing temperatures due to the increasing of the π-dislocation. Finally, the values of the optical susceptibility, χ(3), were found to be annealing dependence.  相似文献   

12.
In this work, In/Te bilayer thin films were prepared using sequential thermal evaporation method and subsequently irradiated using swift heavy ions (SHIs) of 100 MeV silicon (Si) with different fluences (1×1013 to 5×1013/cm2). The inter-diffusion of In and Te layers was highly controlled by SHI irradiation and the In2Te3 formation capability was compared with that of the conventional annealing method. The structural as well as optical properties of a post-sintered SHI-irradiated In/Te bilayer were investigated using X-ray diffraction (XRD) measurements and UV–visible spectroscopy, respectively. We found that irradiated samples showed single-phase In2Te3 under post-annealed conditions at 150 °C unlike that prepared using the conventional thermal annealing method, which showed mixed phases under similar conditions. This confirms the effective inter-diffusion in bilayer films by SHI irradiation toward the formation of single-phase In2Te3. The estimated optical band gap energy was found to be 1.1±0.5 eV and strongly corroborated the XRD results. In addition, the estimated refractive index (n) value of the SHI-irradiated sample (~3.3) was higher than that of the sample obtained through the conventional annealing method (~2.8). This proves that SHI offers a highly compact nature even at low temperatures. This work has a wide scope for achieving single-phase alloyed films through bilayer mixing by SHI irradiation.  相似文献   

13.
Room temperature ferromagnetism was observed in Cr-implanted ZnO nanowires annealed at 500, 600, and 700 °C. The implantation dose for Cr ions was 1×1016 cm?2, while the implantation energies were 100 keV. Except for ZnO (100), (002), and (200) orientations, no extra diffraction peaks from Cr-related secondary phase or impurities were observed. With the increasing of annealing temperatures, the intensity of the peaks increased while the FWHM values decreased. The Cr 2p1/2 and 2p3/2 peaks, with a binding energy difference of 10.6 eV, appear at 586.3 and 575.7 eV, can be attributed to Cr3+ in ZnO nanowires. For the Cr-implanted ZnO nanowires without annealing, the band energy emission disappears and the defect related emission with wavelength of 500–700 nm dominates, which can be attributed to defects introduced by implantation. Cr-implanted ZnO nanowires annealed at 500 °C show a saturation magnetization value of over 11.4×10?5 emu and a positive coercive field of 67 Oe. The origin of ferromagnetism behavior can be explained on the basis of electrons and defects that form bound magnetic polarons, which overlap to create a spin-split impurity band.  相似文献   

14.
Jiyong Hwang  Hoseong Lee 《哲学杂志》2016,96(24):2537-2546
Fe-based amorphous ribbons with excellent soft magnetic properties and mechanical properties were prepared in the Fe–Si–P ternary system. Enhanced soft magnetic properties could be achieved through annealing treatment of the ribbons for 1 h at 325 °C, which is far below the glass transition temperatures (462–474 °C). Icosahedral medium-range ordering with a size range of around 2 nm occurred throughout the amorphous matrix during the low-temperature annealing treatment. The annealed ribbons exhibited improved magnetic saturation of over 185 emu/g while maintaining good mechanical flexibility. During icosahedral ordering, the distance between the Fe atoms and the coordination number within the amorphous ribbon can be optimised for achieving high magnetic saturation. However, nanocrystallisation of the SiP and Fe2P transition phases embedded within the amorphous matrix occurred after the annealing treatment for 1 h at 385 °C, which caused deterioration of the soft magnetic properties and mechanical flexibility of the ribbons. Therefore, the combination of high magnetic saturation and mechanical flexibility of the amorphous ribbons could be optimised through low-temperature annealing treatment without any nanocrystallisation.  相似文献   

15.
The aim of this work is to investigate the optical constants of aluminum doped zinc oxide films annealed at different temperatures. With increasing temperature, due to decreasing unfilled inter-granular volume per unit thickness, the optical transmittance spectra of films were increased. The films have a normal dispersion in the spectral range 400?<?λ?<?500 nm and the anomalous dispersion in IR range. The lattice dielectric constants εL, the free charge carriers concentration, the plasma frequency, Spitzer–Fan model and the waste of electrical energy as heat of films can be analyzed using the refractive index n and the extinction coefficient k spectra. With increasing annealing temperature, the lattice dielectric constants εL of films decrease however the free charge carriers concentration of films increase. The free carrier electric susceptibility of films annealed at 600 °C has maximum value. The energy loss by the free charge carriers when traversing the bulk and surface of films annealed at 600 °C has a minimum value in the near fundamental absorption edge and it with increasing energy increases.  相似文献   

16.
Bartels  J.  Freitag  K.  Marques  J.G.  Soares  J.C.  Vianden  R. 《Hyperfine Interactions》1999,120(1-8):397-402
The perturbed angular correlation (PAC) technique was applied to study the incorporation of the transition metal Hf into GaN after implantation. To this end the PAC probe 181Hf(181Ta) was implanted into epitaxial Wurtzite GaN layers (1.3 μm on sapphire) with an energy of 160 keV and doses of 7× 1012 at/cm2. PAC spectra were recorded during an isochronal annealing programme, using rapid thermal annealing (RTA) and furnace annealing, in the 300–1000oC temperature range. After implantation the spectra show a damped oscillation corresponding to a quadrupole interaction frequency (QIF) of νQ= 340 MHz for 30% of the probe nuclei. Annealing up to 600oC reduces the damping of this frequency without an increase of the probe atom fraction fs in these sites. Above 600oC fs grows rapidly until after the 900oC RTA step more than 80% of the Hf probes experience a well defined QIF due to the incorporation of Hf on undisturbed sites of the hexagonal GaN wurtzite lattice. An interaction frequency of νQ= 340 MHz is derived. RTA and furnace annealing yield similar results for annealing up to 800oC, where the undisturbed fraction reaches about 60%. Then RTA at higher temperatures increases this fraction, while furnace annealing leads to a decrease down to 22% after annealing at 1000oC. To our knowledge this is the first time that a transition metal probe like Hf is incorporated to such a large extent into a semiconductor lattice. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Positron annihilation lifetime spectroscopy was used in a room temperature study of the influence of heat treatment on behaviour of vacancies in Fe0.97Re0.03 and Fe0.94Re0.06 alloys. In this experiment, the vacancies were created during the formation and further mechanical processing of the iron systems under consideration so the lifetime spectra of positrons were collected at least twice. The first samples were taken just after the melting process in an arc furnace, and the second ones were taken for the specimens annealed at 1,270 K and then cold-rolled at room temperature. After that, the spectra were measured for all studied samples after annealing at some temperatures gradually increasing from 300 to 1,270 K. It was found that vacancy-Re pairs are the dominant type of structural defects in alloys just after the melting process. In the case of alloys after a cold rolling process, the dominant type of structural defects is vacancies associated with edge dislocations. Moreover, for cold-rolled samples annealed at 473–573 K, the growth of the vacancy clusters associated with edge dislocations is observed by an increase in the mean positron lifetime. Finally, at temperatures above 573 K, vacancy clusters associated with edge dislocations as well as vacancy-Re pairs become unstable, and freely migrating vacancies sink at grain boundaries.  相似文献   

18.
Thin films and Schottky diodes dots of ruthenium (Ru) on bulk-grown n-type-6-hexagonal-silicon carbide (6H-SiC) were annealed isochronally in a vacuum furnace at temperatures ranging from 500–1,000 °C. Rutherford backscattering spectroscopy analysis of the thin films showed formation of ruthenium silicide (Ru2Si3) at 800 °C, while diffusion of Ru into 6H-SiC commenced at 800 °C. Raman analysis of the thin films annealed at 1,000 °C showed clear D and G carbon peaks which was evidence of formation of graphite. At this annealing temperature, the Schottky contact was observed to convert to an ohmic contact, as evidenced by the linearity of current–voltage characteristic, thereby, rendering the diode unusable. The transformation from Schottky contact to ohmic contact is attributed to graphite formation at the interface.  相似文献   

19.
We report on the defect properties of single-crystalline ZnO nanorods grown from solutions at temperatures below 90 °C. The nanorods can easily be doped by providing impurity precursors during growth. In the as-grown state the nanorods exhibit considerable lattice strain and distortions which compromise their electrical and optical properties. Upon annealing at moderate temperatures of <400 °C the lattice strain is converted into dislocation-type defects, and the dopant impurities become optically active. In the annealed state the near-bandgap photoluminescence quantum efficiency is improved more than 5 times and reaches ~16 % at room temperature. Thus with moderate annealing, interesting device applications become feasible for nanorods grown at T<90 °C.  相似文献   

20.
Kuna Lakshun Naidu 《哲学杂志》2013,93(30):3431-3444
Chromium/silicon bilayers are deposited by sequential electron beam evaporation on quartz substrates. The bilayers consisting of Cr and Si layers of 50 and 400 nm thicknesses, respectively, are subjected to post-deposition annealing at temperatures from 200 to 700 °C. The thermal annealing results in the interdiffusion between Cr and Si, as evidenced by cross-section scanning electron micrographs and the line profiles obtained from energy-dispersive X-ray spectroscopy. It is inferred from the compositional line profiles that the films are a combination of silicon-rich oxide, chromium oxide and unreacted Cr up to 500 °C. Chromium disilicide forms at temperatures greater than 500 °C with decrease in chromium oxide content. The refractive index value and extinction coefficient values are 2.1 and 0.12 in the as-deposited case which increase to 3.5 and 0.24 at 400 °C. These values decrease to 2.1 and 0.12 at 500 °C. At the same temperatures, the band gap values are 2.21, 2.40 and 2.28, respectively. Thus, the refractive index, absorption coefficient and the optical band gap of the films peak at an annealing temperature of 400 °C and decrease thereafter. Significantly, this is accompanied by increase in Urbach energy which is an indication of increase in disorder in the system. There is decrease in Urbach energy as well as the optical constants at temperatures >400 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号