首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Zeaxanthin is a xanthophyll pigment that plays important physiological functions both in the plant and in the animal kingdom. All-trans is a stereochemical conformation of zeaxanthin reported as specific for the thylakoid membranes of the photosynthetic apparatus and the retina of an eye. On the other hand, the pigment is subjected, in natural environment, to the conditions that promote stereochemical isomerization, such as illumination and elevated temperature. In the present work, the light-induced and heat-induced (the temperature range 35-95 degrees C) isomerization of all-trans zeaxanthin in organic solvent environment has been analyzed by means of the HPLC technique. The 13-cis conformation has been identified as a major one among the isomerization products. The activation energy of the all-trans to 13-cis isomerization has been determined as 83 +/- 4 kJ/mol and the activation energy of the back reaction as 30 +/- 7 kJ/mol. The reaction of isomerization of the all-trans zeaxanthin at 25 degrees C was substantially more efficient upon illumination. Four different wavelengths of light have been selected for photo-isomerization experiments: 450, 540, 580 and 670 nm, corresponding to the electronic transitions of zeaxanthin from the ground state to the singlet excited states: 1(1)Bu+,3(1)Ag-,1(1)Bu- and 2(1)Ag-, respectively. The quantum efficiency of the all-trans zeaxanthin isomerization induced by light at different wavelengths: 450, 540, 580 and 670 nm was found to differ considerably and was in the ratio as 1:15:160:29. The sequence of the quantum efficiency values suggests that the carotenoid triplet state 1(3)Bu, populated via the internal conversion from the 1(3)Ag triplet state which is generated by the intersystem crossing from the 1(1)Bu- state may be involved in the light-induced isomerization. A physiological importance of the isomerization of zeaxanthin in the retina of an eye, photosynthetic apparatus and of the pigment active as a blue light photoreceptor in stomata is briefly discussed.  相似文献   

2.
Three main xanthophyll pigments are bound to the major photosynthetic pigment-protein complex of Photosystem II (LHCII): lutein, neoxanthin and violaxanthin. Chromatographic analysis of the xanthophyll fraction of LHCII reveals that lutein appears mainly in the all-trans conformation, neoxanthin in the 9'-cis conformation and major fraction of violaxanthin in the all-trans conformation. Nevertheless, a small fraction of violaxanthin appears always in a cis conformation: 9-cis and 13-cis (approximately 4% and 2% in the darkness, respectively). Illumination of the isolated complex (5 min, 445 nm, 250 micromolm-2s-1) results in the substantial increase in the concentration of the cis steric conformers of violaxanthin: up to 6% of 9-cis and 4% of 13-cis. Similar effect can be obtained by dark incubation of the same preparation for 30 min at 60 degrees C. Heating-induced isomerization of the all-trans violaxanthin can also be obtained in the organic solvent system but the formation of the 9-cis stereoisomer has not been observed under such conditions. The fact that the appearance of the 9-cis form of violaxanthin is specific for the protein environment suggests that violaxanthin may replace neoxanthin in LHCII in the N1 xanthophyll binding pocket and that the protein stabilizes this particular conformation. The analysis of the electronic absorption spectra of LHCII and the FTIR spectra of the protein in the Amid I band spectral region indicates that violaxanthin isomerization is associated with the disaggregation of the complex. It is postulated that this reorganization of LHCII provides conditions for desorption of violaxanthin from the pigment protein complexes, its diffusion within the thylakoid membrane and therefore, availability to the enzymatic deepoxidation within the xanthophyll cycle. It is also possible that violaxanthin isomerization plays the role of a security valve, by consuming an energy of excessive excitations in the antenna pigment network (in particular, exchanged at the triplet state levels).  相似文献   

3.
Alumina adsorption chromatography and ion-pair reversed-phase chromatography were developed to analyze the isomers of unprotonated and protonated n-butylamine Schiff base of retinal (RSB and PRSB), respectively. Photoisomerization starting from the all-trans, 11-cis and 13-cis isomers was traced for RSB in n-hexane, acetonitrile, methanol and 1-butanol, and for PRSB in methanol, acetonitrile and 1-butanol. The quantum yields of photoisomerization for the all-trans, 9-cis, 11-cis and 13-cis isomers were determined for RSB and PRSB in the above solvents except 1-butanol. On the other hand, photoisomerization of isomeric retinal bound (through Schiff base linkage) to bovine serum albumin (RBSA) in aqueous solution (pH 3, 7 and 12) as well as thermal isomerization of RSB (in n-hexane), PRSB (in methanol) and RBSA (in aqueous solution, pH 7) were traced starting from the all-trans, 11-cis, and 13-cis isomers. Protonation of RSB drastically changes the pathway of photoisomerization and increases the quantum yields of isomeric RSB. The solvent polarity increases the quantum yields of RSB differently depending on the configuration. Protonation enhances thermal isomerization also. The results of the above model systems are compared with those of retinal proteins to rationalize their selection of the particular isomerization pathways.  相似文献   

4.
Two-component monomolecular layers were formed with DPPC and two stereoisomers of zeaxanthin 9-cis and 13-cis at the argon-water interface. Very distinct over-additivity which represents affection of a lipid arrangement in the membrane has been observed in the case of zeaxanthin 9-cis (maximum at 20 mol%) but not in the case of zeaxanthin 13-cis. The differences in the organization of the isomers of zeaxanthin-DPPC monolayers are interpreted in terms of the different orientation of both xanthophylls at the interface observed at relatively high surface pressures (>25 mN/m) comparable to the surface pressures of biomembranes. The results are consistent with the model according to which zeaxanthin 9-cis adopts a vertical orientation at the polar-nonpolar interface in contrast to zeaxanthin 13-cis, which is oriented horizontally owing to the fact that it interacts by two hydroxyl groups with the same hydrophobic-hydrophilic interface in the monolayer. The findings are discussed in comparison with the behavior of zeaxanthin in the conformation all-trans in the same system. Zeaxanthin all-trans forms efficiently molecular aggregates in the mixed monolayers in contrast to cis isomers. Circular dichroism measurements show the formation of molecular structures by zeaxanthin 13-cis that are interpreted as dimers. FTIR measurements show that these dimers are stabilized by van der Waals interactions unlike aggregated structures formed by all-trans zeaxanthin that are stabilized by hydrogen bonding. Physiological importance of the differences in aggregation and orientation of stereoisomers of zeaxanthin in lipid environment is discussed.  相似文献   

5.
Abstract— The long lived triplets from all-trans retinal and 11-cis retinal are quenched by a nitroxyl radical, 4-hydroxy-2,2,6,6-tetramethylpiperidinoyl, with essentially identical rate constants. The rates vary with solvent but do not correlate with solvent polarity. The results confirm implications of earlier work with oxygen quenching and are compatible with the view that isomerization occurs in non-relaxed triplets or that the triplet (or triplets) observed spectroscopically decay by way of a single triplet state which has a small electronic energy gap to ground state isomers.  相似文献   

6.
Hydrated thalli of two lichen species--Umbilicaria antarctica and Lasallia pustulata--were exposed to high light (1800 micromol m-2s-1) for 30 min. High light exposure led to a decrease of total glutathione in both species, while de-epoxidation state of xanthophyll cycle pigments and non-photochemical quenching increased. In the subsequent recovery, the values of de-epoxidation state of xanthophyll cycle pigments decreased towards initial values. Glutathione (GSH) was resynthetised slowly. In conclusion, zeaxanthin-related protection is probably more involved than GSH-related protection in short-term response to high light stress in U. antarctica and L. pustulata. Faster recovery from photoinhibition in L. pustulata than U. antarctica is mainly due to faster conversion of zeaxanthin to violaxanthin and larger GSH pool of former species.  相似文献   

7.
All-trans spheroidene was extracted from the cells of Rhodobacer sphaeroides 2.4.1 and a set of cis-trans isomers were isolated from an isomeric mixture obtained by iodine-sensitized photo-isomerization of the all-trans isomer by high-pressure liquid chromatography (HPLC). On the basis of assignment of the 1H-NMR spectra (COSY, long-range COSY, rekyed COSY, ROESY and NOESY) of the all-trans isomer, the configurations of cis isomers were determined by the isomerization shifts of the olefinic 1H signals. The peaks of HPLC could be assigned as follows: A: 9,13'-cis, B1: 5,13-cis, B2: 13,9'-cis, C: 13-cis, E: 9-cis, F: 13'-cis, G: 5,9'-cis, H: 9'-cis, I: all-trans.  相似文献   

8.
Plants protect themselves against excessive light by the induction of ΔpH-dependent nonphotochemical quenching (qE) that is associated with de-epoxidation of violaxanthin (V) to zeaxanthin (Z) in thylakoid membranes. In this work, we report that low light (12 μmol photons m−2 s−1) is sufficient for a marked stimulation of the V to Z conversion in shortly preheated wheat leaves (5 min, 40°C), but without a substantial increase in qE. Re-irradiation of these leaves with high light led to a rapid induction of nonphotochemical quenching, implying a potential photoprotective role of low-light-induced Z in preheated leaves. On the contrary to low light conditions, preheated leaves exposed to high light behaved similar to nonheated leaves with respect to the V to Z conversion and qE induction. The obtained results indicate that low-light-induced lumen acidification in preheated leaves is high enough to activate V de-epoxidation, but not sufficiently high to induce the formation of quenching centers.  相似文献   

9.
姜月顺  小山泰 《化学学报》1997,55(2):172-177
从Rhodobacter sphaeroides 2.4.1提取了全反式球形烯, 用高压液相色谱(HPLC)分离了它的I2增感异构化产物: 9,13'-cis(峰A), 5,13-cis+13,9'-cis(峰B), 13-cis(峰C), 5,13'-cis(峰E1), 9-cis(峰E2), 13'-cis(峰F),5,9'-cis(峰G), 9'-cis(峰H), all-trans(峰I), 研究了异构体的结构对其电子吸收光谱及HPLC保留时间的影响, 从而确认峰E1为5,13'-cis。对全反式球形烯的光敏异构化机理也作了初步探讨。  相似文献   

10.
The dissipation of energy as heat is essential for photosynthetic organisms to protect themselves against excess light. We compared Photosystem II florescence changes (non-photochemical quenching, NPQ) in the brown alga Macrocystis pyrifera with that of Ficus sp., a higher plant to examine if the mechanism of heat dissipation (energy-dependent quenching, qE) differs between these evolutionary distant groups of phototrophs. We discovered that M. pyrifera had a slower rise of NPQ upon illumination than the Ficus sp. Further, the NPQ relaxation phase that takes place in the first minutes after light to dark transition is absent in this brown alga. We found that the NPQ induction rate in this alga was 1.5 times faster in preilluminated samples than in dark-adapted samples; this was associated with an increase in the rate of accumulation of the carotenoid zeaxanthin. Therefore, we conclude that NPQ in M. pyrifera is associated only with the formation of zeaxanthin. These results indicate that M. pyrifera lacks the fast component of qE that is related to allosteric changes in the light harvesting complexes of Ficus sp., a representative of higher plants. Although the xanthophyll cycle of this brown alga is similar to that of Ficus sp., yet, the transthylakoid proton gradient (ΔpH) does not influence NPQ beyond the activation of the violaxanthin de-epoxidase enzyme. These findings suggest that NPQ control mechanisms are not universal and we suggest that it may have diverged early in the evolution of different groups of eukaryotic phototrophs.  相似文献   

11.
Photochemistry in retinal proteins (RPs) is determined both by the properties of the retinal chromophore and by its interactions with the surrounding protein. The initial retinal configuration, and the isomerization coordinates active in any specific protein, must be important factors influencing the course of photochemistry. This is illustrated by the vast differences between the photoisomerization dynamics in visual pigments which start 11-cis and end all-trans, and those observed in microbial ion pumps and sensory rhodopsins which start all-trans and end in a 13-cis configuration. However, isolating these factors is difficult since most RPs accommodate only one active stable ground-state configuration. Anabaena sensory rhodopsin, allegedly functioning in cyanobacteria as a wavelength sensor, exists in two stable photoswitchable forms, containing all-trans and 13-cis retinal isomers, at a wavelength-dependent ratio. Using femtosecond spectroscopy, and aided by extraction of coherent vibrational signatures, we show that cis-to-trans photoisomerization, as in visual pigments, is ballistic and over in a fraction of a picosecond, while the reverse is nearly 10 times slower and kinetically reminiscent of other microbial rhodopsins. This provides a new test case for appreciating medium effects on primary events in RPs.  相似文献   

12.
Absorbance spectra and excitation spectra of chlorophyll a fluoresence were recorded during the light-induced deepoxidation of violaxauthin to zeaxanthin in bean leaves (Phaseolus coccineus) greened under intermittent light. Light minus dark fluorescence excitation difference spectra showed distinct minima at 440, 465, and 500 nm corresponding to maxima in the absorbance difference spectra. Both difference spectra were prevented by the deepoxidase inhibitor dithiothreitol and were inverted when zeaxanthin was epoxidized. The fluorescence excitation difference spectra were successfully modeled by considering the absorbance differences between violaxanthin and zeaxanthin, assuming no energy transfer from the two pigments to chlorophyll a, and accounting for light-induced scattering changes. The pigment stoichiometry and the scattering changes of the simulation were in accordance with experimental data. The results indicate that, in the early stage of leaf development, light absorbed by the cycle pigments violaxanthin and zeaxanthin is not transferred to chlorophyll.  相似文献   

13.
Abstract— The mechanism of action of xanthophyll cycle carotenoids in controlling the quenching of chlorophyll fluorescence in the major light-harvesting complex of photosystem II (LHCIIb) has been investigated. Auroxanthin, a diepoxy carotenoid with 7 conjugated carbon double bonds, violaxanthin (9 conjugated double bonds) and zeaxanthin (11 conjugated double bonds) have been compared with regard to their effects in vitro on fluorescence quenching and LHCIIb oligomerization. It was found that auroxanthin stimulated fluorescence quenching, similar to the effect of zeaxanthin and in contrast to the inhibition caused by violaxanthin. Auroxanthin caused an increase in the oligomerization of LHCIIb and an increase in relative emission of long-wavelength fluorescence at 77 K. It is concluded that auroxanthin can mimic the effect of zeaxanthin on LHCII, strongly suggesting that the xanthophyll cycle carotenoids control quenching in vitro by an indirect structural effect and not by direct quenching of chlorophyll excited states.  相似文献   

14.
Light harvesting complexes (LHCs) have been identified in all photosynthetic organisms. To understand their function in light harvesting and energy dissipation, detailed knowledge about possible excitation energy transfer (EET) and electron transfer (ET) processes in these pigment proteins is of prime importance. This again requires the study of electronically excited states of the involved pigment molecules, in LHCs of chlorophylls and carotenoids. This paper represents a critical review of recent quantum chemical calculations on EET and ET processes between pigment pairs relevant for the major LHCs of green plants (LHC-II) and of purple bacteria (LH2). The theoretical methodology for a meaningful investigation of such processes is described in detail, and benefits and limitations of standard methods are discussed. The current status of excited state calculations on chlorophylls and carotenoids is outlined. It is focused on the possibility of EET and ET in the context of chlorophyll fluorescence quenching in LHC-II and carotenoid radical cation formation in LH2. In the context of non-photochemical quenching of green plants, it is shown that replacement of the carotenoid violaxanthin by zeaxanthin in its binding pocket of LHC-II can not result in efficient quenching. In LH2, our computational results give strong evidence that the S(1) states of the carotenoids are involved in carotenoid cation formation. By comparison of theoretical findings with recent experimental data, a general mechanism for carotenoid radical cation formation is suggested.  相似文献   

15.
The all-trans to mono-cis isomerizations of polyenes and two C40H56 carotenes, beta-carotene and lycopene, at the ground singlet (S0) and triplet (T1) states are studied by means of quantum chemistry computations. At the S0 state of polyenes containing n acetylene units (Pn), we find that the energy barrier of the central C=C rotation decreases with n. In contrast, however, at the T 1 state, the rotational barrier increases with n. For the C40H56 carotenes, the rotational barriers of lycopene are lower than those of their beta-carotene counterparts. This difference renders the rotational rates of lycopene to be 1-2 orders of magnitude higher than those of beta-carotene at room temperature. For both these carotenes, the barrier is lowest for the rotation toward the 13-cis isomer. The relative abundances are in the following order: all-trans > 9-cis > 13-cis > 15-cis. Although the 5-cis isomer of lycopene has the lowest energy among the cis isomers, its formation from the all-trans form is restricted, owing to a very large rotational barrier. The possible physiological implications of this study are discussed.  相似文献   

16.
Thirteen geometric isomers of retinol, retinal and retinal oxime were resolved in a single chromatographic run on two 250 X 4 mm 5-micron LiChrosorb Si 60 columns in series, using 11.2% ethyl acetate, 1.4% 1-octanol and 2% dioxane in hexane as the mobile phase. All the 11-cis and all-trans isomers of retinol and retinal oxime were completely resolved from each other and from the 9-cis and 13-cis isomers. This chromatographic procedure should be particularly useful for quantifying geometric isomers of retinoids in methylene chloride-hydroxylamine extracts of biological samples such as ocular tissues.  相似文献   

17.
Abstract

Several normal-phase high performance liquid chromato-graphic methods for the quantitation of Vitamin A palmitate in liquid multivitamin formulations using both radially-compressed and conventional silica columns are described. The methods are reproducible, require minimal sample preparation and resolve the predominant cis-trans isomers of vitamin A (13-cis, all-trans, 9-cis and 9,13-dicis). Good agreement is obtained between HPLC and USP assay for samples containing a small amount (6% or less) of the vitamin A as the 13-cis isomer.  相似文献   

18.
Abstract— The 11-cis and all-trans isomers of a series of poly(ethylene glycol)-oligopeptide - Schiff bases as models for rhodopsin were synthesized and studied. Absorption data for certain of the PEG-peptide Schiff bases demonstrated that no intramolecular hydrogen-bonding (or protonation) occurs between the Schiff base and an acidic amino acid residue, as was previously thought. Photoisomerization of the 11-cis protonated and unprotonated Schiff bases were examined using both steady state and laser flash techniques. Also with 355 nm excitation (and additionally 532 nm in one case), an approximate 40% increase in quantum yield of isomerization (φ) occurred for all protonated PEG-peptide Schiff bases compared to the H+-n-butylamine counterparts (in methanol). In one case, a > 100% increase in φ was found in dichloromethane. These data show that PEG-oligopeptide Schiff bases are still further improved models for rhodopsin compared to their n-butylamine analogs.  相似文献   

19.
This study aimed to investigate the role and mechanism of CXC chemokine receptor 4 (CXCR4) in cadmium (Cd)-induced renal injury. CXCR4 and TGF-β1/Smad pathway protein levels were detected by western blotting. Indicators related to renal function and oxidative stress factors were assessed and reactive oxygen species (ROS) level was evaluated by staining. TUNEL was used to measure apoptosis rate. PAS and Masson's trichrome staining were used to detect the level of renal fibrosis. The expression of Bcl-2, Bax, Cleaved-caspase 3, fibronectin, and collagen I proteins were detected by western blotting, immunohistochemistry, or immunofluorescence. The expression of CXCR4 was increased in a Cd-induced chronic renal injury model in rats. Si-CXCR4 decreased levels of TGF-β1, TGF-βR1, p-Smad2/Smad2, p-Smad3/Smad3, the renal weight index, urine protein, blood urea nitrogen, blood creatinine, and levels of MDA but raised the levels of SOD and GSH-Px. In addition, si-CXCR4 inhibited apoptosis in Cd-treated rats. CXCR4 inhibition alleviated fibrosis levels in Cd-treated rats. In Cd-treated cells, TGF-β attenuated the suppressive effect of CXCR4 inhibition on the TGF-β1/Smad pathway. TGF-β intervention increased MDA and ROS, and downregulated SOD and GSH-Px. TGF-β attenuated the inhibitory effect of CXCR4 on apoptosis and fibrosis. CXCR4 inhibition decreased levels of Cd-induced renal oxidative stress, apoptosis, and fibrosis by inhibiting the TGF-β1/Smad pathway.  相似文献   

20.
We have used chlorophyll fluorescence, delayed luminescence and thermoluminescence measurements to study the influence of an artificial DeltapH in the presence or absence of zeaxanthin on photosystem II reactions. Energization of the pea thylakoid membranes induced non-photochemical fluorescence quenching and an increase in the overall luminescence emission of PSII during delayed luminescence and thermoluminescence measurements. This DeltapH-induced overall luminescence increase was caused by a strongly enhanced delayed luminescence in the seconds range before sample heating. In the subsequent thermoluminescence measurements the intensity of the B-band decreased after one and increased after two or more single turnover flashes. We propose that strong membrane energization shifted the redox potential of photosystem II radical pairs to more negative values causing the high delayed luminescence. The zeaxanthin-dependent non-photochemical fluorescence quenching component, however, did not alter thermoluminescence B-bands but decreased the delayed luminescence intensity by 30%. To our knowledge this is the first report that the radiative radical pair recombination, exhibited as delayed luminescence but not thermoluminescence emission, is sensitive to the antenna located zeaxanthin related non-photochemical fluorescence quenching. Our data can be interpreted within the frame of the exciton/radical pair equilibrium model that describes photosystem II as a shallow trap and incorporates the transfer of energy from the re-excitated reaction centre to the antenna of photosystem II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号