首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Near‐IR (NIR) emission can offer distinct advantages for both in vitro and in vivo biological applications. Two NIR fluorescent turn‐on sensors N,N′‐di‐n‐butyl‐2‐(N‐{2‐[bis(pyridin‐2‐ylmethyl)amino]ethyl})‐6‐(N‐piperidinyl)naphthalene‐1,4,5,8‐tetracarboxylic acid bisimide and N,N′‐di‐ n‐butyl‐2‐[N,N,N′‐tri(pyridin‐2‐ylmethyl)amino]ethyl‐6‐(N‐piperidinyl)naphthalene‐1,4,5,8‐tetracarboxylic acid bisimide (PND and PNT) for Zn2+ based on naphthalenediimide fluorophore are reported. Our strategy was to choose core‐substituted naphthalenediimide (NDI) as a novel NIR fluorophore and N,N‐di(pyridin‐2‐ylmethyl)ethane‐1,2‐diamine (DPEA) or N,N,N′‐tri(pyridin‐2‐ylmethyl)ethane‐1,2‐diamine (TPEA) as the receptor, respectively, so as to improve the selectivity to Zn2+. In the case of PND, the negligible shift in absorption and emission spectra is strongly suggestive that the secondary nitrogen atom (directly connected to the NDI moiety, N1) is little disturbed with Zn2+. The fluorescence enhancement of PND with Zn2+ titration is dominated with a typical photoinduced electron‐transfer (PET) process. In contrast, the N1 atom for PNT can participate in the coordination of Zn2+ ion, diminishing the electron delocalization of the NDI moiety and resulting in intramolecular charge‐transfer (ICT) disturbance. For PNT, the distinct blueshift in both absorbance and fluorescence is indicative of a combination of PET and ICT processes, which unexpectedly decreases the sensitivity to Zn2+. Due to the differential binding mode caused by the ligand effect, PND shows excellent selectivity to Zn2+ over other metal ions, with a larger fluorescent enhancement centered at 650 nm. Also both PND and PNT were successfully used to image intracellular Zn2+ ions in the living KB cells.  相似文献   

2.
Polypyridyl multidentate ligands based on ethylenediamine backbones are important metal‐binding agents with applications in biomimetics and homogeneous catalysis. The seemingly hexadentate tpena ligand [systematic name: N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetate] reacts with zinc chloride and zinc bromide to form trichlorido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dizinc(II), [Zn2(C22H24N5O2)Cl3], and tribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dizinc(II), [Zn2Br3(C22H24N5O2)]. One ZnII ion shows the anticipated N5O coordination in an irregular six‐coordinate site and is linked by an anti carboxylate bridge to a tetrahedral ZnX3 (X = Cl or Br) unit. In contrast, the CuII ions in aquatribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dicopper(II)–tribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dicopper(II)–water (1/1/6.5) [Cu2Br3(C22H24N5O2)][Cu2Br3(C22H24N5O2)(H2O)]·6.5H2O, occupy two tpena‐chelated sites, one a trigonal bipyramidal N3Cl2 site and the other a square‐planar N2OCl site. In all three cases, electrospray ionization mass spectra were dominated by a misleading ion assignable to [M(tpena)]+ (M = Zn2+ and Cu2+).  相似文献   

3.
In the title compound, catena‐poly[[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[1,1′‐biphenyl]‐4,4′‐dicarboxylato‐[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]], [Zn2(C14H8O4)Cl2(C26H22N4O2)3]n, the ZnII centre is four‐coordinate and approximately tetrahedral, bonding to one carboxylate O atom from a bidentate bridging dianionic [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand, to two pyridine N atoms from two N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide ligands and to one chloride ligand. The pyridyl ligands exhibit bidentate bridging and monodentate terminal coordination modes. The bidentate bridging pyridyl ligand and the bridging [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand both lie on special positions, with inversion centres at the mid‐points of their central C—C bonds. These bridging groups link the ZnII centres into a one‐dimensional tape structure that propagates along the crystallographic b direction. The tapes are interlinked into a two‐dimensional layer in the ab plane through N—H...O hydrogen bonds between the monodentate ligands. In addition, the thermal stability and solid‐state photoluminescence properties of the title compound are reported.  相似文献   

4.
A mononuclear iron(II) complex with the tripodal ligand bis(pyridin‐2‐ylmethyl)(quinolin‐2‐ylmethyl)amine (dpqa) has been synthesized and structurally characterized, namely [bis(pyridin‐2‐ylmethyl)(quinolin‐2‐ylmethyl)amine‐κ4N,N′,N′′,N′′′]bis(thiocyanato‐κS)iron(II), [Fe(NCS)2(C22H20N4)], exhibits a three‐dimensional supramolecular network viaπ–π interactions and S...H—C hydrogen‐bonding interactions between adjacent FeII centres. Temperature‐dependent magnetic measurements under different external pressures and X‐ray diffraction measurements indicate that all the FeII centres in this complex retain a high‐spin state upon cooling from 300 to 2 K. The surprising absence of spin‐crossover behaviour for this mononuclear iron(II) complex is attributed to the steric hindrance originating from the substituted quinoline ring in the dpqa ligand.  相似文献   

5.
The design and synthesis of functional coordination polymers is motivated not only by their structural beauty but also by their potential applications. ZnII and CdII coordination polymers are promising candidates for producing photoactive materials because these d10 metal ions not only possess a variety of coordination numbers and geometries, but also exhibit luminescence properties when bound to functional ligands. It is difficult to predict the final structure of such polymers because the assembly process is influenced by many subtle factors. Bis(imidazol‐1‐yl)‐substituted alkane/benzene molecules are good bridging ligands because their flexibility allows them to bend and rotate when they coordinate to metal centres. Two new ZnII and CdII coordination polymers based on mixed ligands, namely, poly[[μ2‐1,4‐bis(imidazol‐1‐ylmethyl)benzene‐κ2N3:N3′]bis(μ3‐2,2‐dimethylbutanoato‐κ3O1:O4:O4′)dizinc(II)], [Zn2(C6H8O4)2(C14H14N4)]n, and poly[[μ2‐1,4‐bis(imidazol‐1‐ylmethyl)benzene‐κ2N3:N3′]bis(μ3‐2,2‐dimethylbutanoato‐κ5O1,O1′:O4,O4′:O4)dicadmium(II)], [Cd2(C6H8O4)2(C14H14N4)]n, have been synthesized under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction, elemental analysis, IR spectroscopy and thermogravimetric analysis. Both complexes crystallize in the monoclinic space group C2/c with similar unit‐cell parameters and feature two‐dimensional structures formed by the interconnection of S‐shaped Zn(Cd)–2,2‐dimethylsuccinate chains with 1,4‐bis(imidazol‐1‐ylmethyl)benzene bridges. However, the CdII and ZnII centres have different coordination numbers and the 2,2‐dimethylsuccinate ligands display different coordination modes. Both complexes exhibit a blue photoluminescence in the solid state at room temperature.  相似文献   

6.
A combination of a bent bis(naphthalene) and hydroxy‐based dicarboxylate linker and a flexible bis(tridentate)polypyridyl ligand has been employed to self‐assemble with two different d10 metal centers, ZnII and CdII, to form structurally diversified luminescent metal–organic frameworks, [Zn2(tpbn)(mbhna)2(H2O)2]?4 H2O?1.5DMF ( 1 ) and {[Cd2(tpbn)(mbhna)2]?2DMF}n ( 2 ), respectively (where, tpbn=N,N′,N′′,N′′′‐tetrakis(pyridine‐2‐ylmethyl)butane‐1,4‐diamine and H2mbhna=4,4′‐methylene‐bis[3‐hydroxy‐2‐naphthalene carboxylic acid]). Both 1 and 2 are characterized and analyzed by various analytical techniques including single‐crystal X‐ray diffractometry. Their excellent emissive nature is studied in different solvents and further utilized to selectively detect aromatic amines, particularly 4‐nitroaniline in water with detection limits at sub‐ppm level. The difference in sensing activity of 1 and 2 toward 4‐NA is corroborated well with their structures. The mechanism of action has been established through Stern–Volmer plot, spectral overlap, time‐resolved lifetime studies and HOMO–LUMO energy calculations. In addition, 1 and 2 are found to be recyclable and display good stability after sensing experiments.  相似文献   

7.
Although having been described as a liquid in the literature for 41 years, 1,2‐bis[(pyridin‐2‐ylmethyl)sulfanyl]ethane, C14H16N2S2, (I), has now been obtained as monoclinic crystals via a new and convenient method of purification. Molecules of (I) are located on crystallographic inversion centres and are held together by C—H...N and C—H...S interactions, resulting in the formation of a three‐dimensional network structure. In addition, two polymorphs of the corresponding hydrochloride salt, 2‐[({2‐[(pyridin‐1‐ium‐2‐ylmethyl)sulfanyl]ethyl}sulfanyl)methyl]pyridin‐1‐ium dichloride, C14H18N2S22+·2Cl, (II) and (III), have been isolated. Molecules of (II) and (III) have similar conformations and are located on inversion centres. Both polymorphs form three‐dimensional networks through N—H...Cl, C—H...Cl and C—H...S interactions. The structure of (III) displays voids of 35 Å3.  相似文献   

8.
Two new acylamide metal–organic frameworks (MOFs), based on mixed N‐ and O‐donor ligands, with 4‐connected topologies have been obtained, namely poly[[μ2N1,N4‐bis(pyridin‐3‐yl)terephthalamide]bis(μ3‐4,4′‐oxydibenzoato)dizinc(II)], [Zn2(C14H8O5)2(C18H14N4O2)]n, (1), and poly[[(μ2‐benzene‐1,4‐dicarboxylato)[μ2N4,N4′‐bis(pyridin‐3‐yl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]dicadmium(II)] dihydrate], {[Cd(C8H4O4)(C24H18N4O2)]·2H2O}n, (2). Complex (1) is a 4‐connected CdSO4 net with no interpenetration, where the ZnII cation is regarded as a 4‐connecting node with square geometry. Complex (2) is a 4‐connected dia net with threefold interpenetration, where the CdII cation acts as a 4‐connecting node with tetrahedral geometry. The results of thermogravimetric and luminescence analyses are described in detail.  相似文献   

9.
Naphthalenediimides, a class of organic dyes with an expanded π‐electron‐deficient plane, have attracted considerable interest because of their photoinduced electron transfer from neutral organic moieties to stable anionic radicals. This makes them excellent candidates for organic linkers in the construction of photochromic coordination polymers. Such a photochromic two‐dimensional coordination polymer has been prepared using N,N′‐bis(pyridin‐4‐ylmethyl)naphthalene‐1,8:4,5‐bis(dicarboximide) (DPMNI). In crystallization tubes, upon slow diffusion of an MeOH solution of cadmium perchlorate into a CHCl3 solution of DPMNI, the complex poly[[bis[μ2‐2,7‐bis(pyridin‐4‐ylmethyl)benzo[imn][3,8]phenanthroline‐1,3,6,8(2H,7H)‐tetrone‐κ2N:N′]bis(perchlorato‐κO)cadmium(II)] chloroform tetrasolvate], {[Cd(C26H16N4O4)2(ClO4)2]·4CHCl3}n, (I), was obtained. The asymmetric unit contains one Cd2+ cation, two DPMNI ligands, two coordinated ClO4 anions and four CHCl3 solvent molecules. Each Cd2+ cation is interconnected by four DPMNI linkers to generate a neutral two‐dimensional naphthalenediimide coordination network with all the ClO4 anions above or below this plane. Strong interlaminar anion–π interactions between the coordinated ClO4 anions and the imide rings of an adjacent layer lead to a three‐dimensional supramolecular structure. Compound (I) exhibits reversible photochromic behaviour and photocontrolled tunable luminescence properties, which may originate from the photoinduced electron‐transfer generation of radicals in the DPMNI ligand.  相似文献   

10.
Metal complexes with Schiff base ligands have been suggested as potential phosphors in electroluminescent devices. In the title complex, tetrakis[6‐methyl‐2‐({[(pyridin‐2‐yl)methyl]imino}methyl)phenolato‐1:2κ8N,N′,O:O;3:2κ8N,N′,O:O]trizinc(II) hexafluoridophosphate methanol monosolvate, [Zn3(C14H13N2O)4](PF6)2·CH3OH, the ZnII cations adopt both six‐ and four‐coordinate geometries involving the N and O atoms of tetradentate 6‐methyl‐2‐({[(pyridin‐2‐yl)methyl]imino}methyl)phenolate ligands. Two terminal ZnII cations adopt distorted octahedral geometries and the central ZnII cation adopts a distorted tetrahedral geometry. The O atoms of the phenolate ligands bridge three ZnII cations, forming a dicationic trinuclear metal cluster. The title complex exhibits a strong emission at 469 nm with a quantum yield of 15.5%.  相似文献   

11.
The bromo‐substituted aromatic dicarboxylic acid 5‐amino‐2,4,6‐tribromoisophthalic acid (H2ATBIP), in the presence of the N‐donor flexible bipyridyl‐type ligands 1,3‐bis(pyridin‐4‐yl)propane (bpp) and N,N′‐bis(pyridin‐4‐ylmethyl)oxalamide (4‐bpme) and ZnII ions, was used as an O‐donor ligand to assemble two novel luminescent metal–organic frameworks (MOFs), namely poly[[(μ‐5‐amino‐2,4,6‐tribromoisophthalato‐κ2O1:O3)[μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′]zinc(II)] dimethylformamide monosolvate], {[Zn(C8H2Br3NO4)(C13H14N2)]·C3H7NO}n, ( 1 ), and poly[[(μ‐5‐amino‐2,4,6‐tribromoisophthalato‐κ2O1:O3)diaqua[μ‐N,N′‐bis(pyridin‐4‐ylmethyl)oxalamide‐κ2N:N′]zinc(II)] monohydrate], {[Zn(C8H2Br3NO4)(C14H14N4O2)(H2O)2]·H2O}n, ( 2 ), using the solution evaporation method. Both ( 1 ) and ( 2 ) were characterized by FT–IR spectroscopy, elemental analysis (EA), solid‐state diffuse‐reflectance UV–Vis spectroscopy, and powder and single‐crystal X‐ray diffraction analysis. Complex ( 1 ) shows a two‐dimensional (2D) corrugated layer simplified as a 2D (4,4) topological network. The supramolecular interactions (π–π stacking, hydrogen bonding and C—Br…Br halogen bonding) play significant roles in the formation of an extended three‐dimensional (3D) supramolecular network of ( 1 ). Complex ( 2 ) crystallizes in the chiral space group P212121 and exhibits a novel 3D homochiral framework, showing a diamond‐like topology with Schläfli symbol 66. The homochirality of ( 2 ) is further confirmed by the solid‐state circular dichroism (CD) spectrum. The second harmonic generation (SHG) property of ( 2 ) was also investigated. The hydrogen and C—Br…Br/O halogen bonding further stabilize the framework of ( 2 ). The central ZnII ions in ( 1 ) and ( 2 ) show tetrahedral and octahedral coordination geometries, respectively. The coordinated and uncoordinated water molecules in ( 2 ) could be removed selectively upon heating. Most importantly, ( 1 ) and ( 2 ) show rapid and highly sensitive sensing for a large pool of nitroaromatic explosives (NAEs).  相似文献   

12.
A chemo‐sensor [Ru(bpy)2(bpy‐DPF)](PF6)2 ( 1 ) (bpy=2,2′‐bipyridine, bpy‐DPF=2,2′‐bipyridyl‐4,4′‐bis(N,N‐di(2‐picolyl))formylamide) for Cu2+ using di(2‐picolyl)amine (DPA) as the recognition group and a ruthenium(II) complex as the reporting group was synthesized and characterized successfully. It demonstrates a high selectivity and efficient signaling behavior only for Cu2+ with obvious red‐shifted MLCT (metal‐to‐ligand charge transfer transitions) absorptions and dramatic fluorescence quenching compared with Zn2+ and other metal ions.  相似文献   

13.
The bromo‐substituted aromatic dicarboxylic acid 5‐amino‐2,4,6‐tribromoisophthalic acid (H2ATBIP) was used to assemble with CdII ions in the presence of the N‐donor flexible bipyridyl ligands 3,3′‐(diazene‐1,2‐diyl)dipyridine (mzpy) and 1,3‐bis(pyridin‐3‐ylmethyl)urea (3bpmu), leading to the formation of two chain coordination polymers by adopting solution methods, namely, catena‐poly[[[triaqua(5‐amino‐2,4,6‐tribromoisophthalato‐κO)cadmium(II)]‐μ‐3,3′‐(diazene‐1,2‐diyl)dipyridine‐κ2N1:N1′] dihydrate], {[Cd(C8H2Br3NO4)(C10H8N4)(H2O)3]·2H2O}n or {[Cd(ATBIP)(mzpy)(H2O)3]·2H2O}n, ( 1 ), and catena‐poly[[[tetraaquacadmium(II)]‐μ‐1,3‐bis(pyridin‐3‐ylmethyl)urea‐κ2N1:N1′‐[diaquabis(5‐amino‐2,4,6‐tribromoisophthalato‐κO)cadmium(II)]‐μ‐1,3‐bis(pyridin‐3‐ylmethyl)urea‐κ2N1:N1′] octahydrate], {[Cd(C8H2Br3NO4)(C12H12N4O)(H2O)3]·4H2O}n or {[Cd(ATBIP)(3bpmu)(H2O)3]·4H2O}n, ( 2 ). Both complexes were characterized by FT–IR spectroscopic analysis, thermogravimetric analysis (TGA), solid‐state diffuse reflectance UV–Vis spectroscopic analysis, and single‐crystal and powder X‐ray diffraction analysis (PXRD). The mzpy and 3bpmu ligands bridge the CdII metal centres in ( 1 ) and ( 2 ) into one‐dimensional chains, and the ATBIP2− ligands show a monodentate coordination to the CdII centres in both coordination polymers. A discrete water tetramer exists in ( 1 ). Within the chains of ( 1 ) and ( 2 ), there are halogen bonds between adjacent ATBIP2− and mzpy or 3bpmu ligands, as well as hydrogen bonds between the ATBIP2− ligands and the coordinated water molecules. With the aid of weak interactions, the structures of ( 1 ) and ( 2 ) are further extended into three‐dimensional supramolecular networks. An analysis of the solid‐state diffuse reflectance UV–Vis spectra of ( 1 ) and ( 2 ) indicates that a wide indirect band gap exists in both complexes. Complexes ( 1 ) and ( 2 ) exhibit irreversible and reversible dehydration–rehydration behaviours, respectively, and the solid‐state fluorescence properties of both complexes have been studied.  相似文献   

14.
The aim of this report is to present the electrospray ionization mass spectrometry results of the non‐covalent interaction of two biologically active ligands, N‐1 ‐ (p‐toluenesulfonyl)cytosine, 1‐TsC, 1 and N‐1 ‐ methanesulfonylcytosine, 1‐MsC, 2 and their Cu(II) complexes Cu(1‐TsC‐N3)2Cl2, 3 and Cu(1‐MsC‐N3)2Cl2 and 4 with biologically important cations: Na+, K+, Ca2+, Mg2+ and Zn2+. The formation of various complex metal ions was observed. The alkali metals Na+ and K+ formed clusters because of electrostatic interactions. Ca2+ and Mg2+ salts produced the tris ligand and mixed ligand complexes. The interaction of Zn2+ with 1–4 produced monometal and dimetal Zn2+ complexes as a result of the affinity of Zn2+ ions toward both O and N atoms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The photophysical properties of transition metal complexes of the 5,6‐dimethyl‐2‐(pyridin‐2‐yl)‐1‐(pyridin‐2‐ylmethyl)‐1H‐benzimidazole ligand are of interest. Dichlorido[5,6‐dimethyl‐2‐(pyridin‐2‐yl)‐1‐(pyridin‐2‐ylmethyl)‐1H‐benzimidazole‐κ2N 2,N 3]platinum(II), [PtCl2(C20H18N4)], is luminescent in the solid state at room temperature. The compound displays a distorted square‐planar coordination geometry. The Pt—N(imidazole) bond length is shorter than the Pt—N(pyridine) bond length. The extended structure reveals that symmetry‐related molecules display weak C—H…N, C—H…Cl, and C—H…Pt hydrogen‐bonding interactions that are clearly discernable in the Hirshfeld surface and fingerprint plots. The intermolecular C—H…Pt and C—H…N interactions have been explored using density functional theory. The result of an analysis of the distance dependence of C—H…Pt yields a value consistent with that observed in the solid‐state structure. The energy of interaction for the C—H…Pt interaction is found to be about −11 kJ mol−1.  相似文献   

16.
A new 2,2′‐bi‐1H‐benzimidazole bridging organic ligand, namely 1,1′‐bis(pyridin‐4‐ylmethyl)‐2,2′‐bi‐1H‐benzimidazole, C26H20N6, L or (I), has been synthesized and used to create three new one‐dimensional coordination polymers, viz.catena‐poly[[dichloridomercury(II)]‐μ‐1,1′‐bis(pyridin‐4‐ylmethyl)‐2,2′‐bi‐1H‐benzimidazole], [HgCl2(C26H20N6)]n, (II), and the bromido, [HgBr2(C26H20N6)]n, (III), and iodido, [HgI2(C26H20N6)]n, (IV), analogues. Free ligand L crystallizes with two symmetry‐independent half‐molecules in the asymmetric unit and each L molecule resides on a crytallographic inversion centre. In structures (II)–(IV), the L ligand is also positioned on a crystallographic inversion centre, whereas the Hg centre resides on a crystallographic twofold axis. Compound (I) adopts an anti conformation in the solid state and forms a two‐dimensional network in the crystallographic bc plane viaπ–π and C—H...π interactions. The three HgII coordination complexes, (II)–(IV), have one‐dimensional zigzag chains composed of L and HgX2 (X = Cl, Br and I), and the HgII centres are in a distorted tetrahedral [HgX2N2] coordination geometry. Complexes (III) and (IV) are isomorphous, whereas complex (II) displays an interesting conformational difference from the others, i.e. a twist in the flexible bridging ligand.  相似文献   

17.
The copper complex [(bztpen)Cu](BF4)2 (bztpen=N‐benzyl‐N,N′,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine) displays high catalytic activity for electrochemical proton reduction in acidic aqueous solutions, with a calculated hydrogen‐generation rate constant (kobs) of over 10000 s?1. A turnover frequency (TOF) of 7000 h?1 cm?2 and a Faradaic efficiency of 96 % were obtained from a controlled potential electrolysis (CPE) experiment with [(bztpen)Cu]2+ in pH 2.5 buffer solution at ?0.90 V versus the standard hydrogen electrode (SHE) over two hours using a glassy carbon electrode. A mechanism involving two proton‐coupled reduction steps was proposed for the dihydrogen generation reaction catalyzed by [(bztpen)Cu]2+.  相似文献   

18.
Three Ru(bpy)32+ derivatives tethered to multiple viologen acceptors, [Ru(bpy)2(4,4′‐MV2)]6+, [Ru(bpy)2(4,4′‐MV4)]10+, and [Ru(bpy)(4,4′‐MV4)2]18+ [bpy=2,2′‐bipyridine, 4,4′‐MV2=4‐ethoxycarbonyl‐4′‐(N‐G1‐carbamoyl)‐2,2′‐bipyridine, and 4,4′‐MV4=4,4′‐bis(N‐G1‐carbamoyl)‐2,2′‐bipyridine, where G1=Asp(NHG2)‐NHG2 and G2=‐(CH2)2‐N+C5H4‐C5H4N+‐CH3] were prepared as “photo‐charge separators (PCSs)”. Photoirradiation of these complexes in the presence of a sacrificial electron donor (EDTA) results in storage of electrons per PCS values of 1.3, 2.7, and 4.6, respectively. Their applications in the photochemical H2 evolution from water in the presence of a colloidal Pt H2‐evolving catalyst were investigated, and are discussed along with those reported for [Ru(bpy)2(5,5′‐MV4)]10+, [Ru(4,4′‐MV4)3]26+, and [Ru(5,5′‐MV4)3]26+ (Inorg. Chem. Front. 2016 , 3, 671–680). The PCSs with high dimerization constants (Kd=105–106 m ?1) are superior in driving H2 evolution at pH 5.0, whereas those with lower Kd values (103–104 m ?1) are superior at pH 7.0, where Kd=[(MV+)2]/[MV+ . ]2. The (MV+)2 site can drive H2 evolution only at pH 5.0 as a result of its 0.15 eV lower driving force for H2 evolution relative to MV+ . , whereas the PCSs with lower Kd values exhibit higher performance at pH 7.0 owing to the higher population of free MV+ . . Importantly, the rate of electron charging over the PCSs is linear to the apparent H2 evolution rate, and shows an intriguing quadratic dependence on the number of MV2+ units per PCS.  相似文献   

19.
Complex formation between N,N,N′,N′‐tetrakis(2‐aminoethyl)ethane‐1,2‐diamine (penten) and the metal ions Mn2+, Co2+, Cu2+, Zn2+, Cd2+, Hg2+, Ag+, Pb2+, and Tl3+ (in 1.00M NaNO3 and 25°) was investigated by potentiometry and spectrophotometry. These are the first reported values of the stability constants for this ligand with Ag+, Pb2+, and Tl3+. The X‐ray crystal structure of [Tl(NO3)(penten)](NO3)2 was determined. In this structure, Tl3+ shows a coordination number of seven made up of the six N‐donors and one O‐atom of NO.  相似文献   

20.
A novel three‐dimensional (3D) ZnII coordination polymer, namely, poly[[[1,4‐bis(pyridin‐4‐yl)benzene](μ3‐3,3′‐{[1,3‐phenylenebis(methylene)]bis(oxy)}dibenzoato)zinc(II)] 1,4‐bis(pyridin‐4‐yl)benzene], {[Zn(C22H16O6)(C16H12N2)]·C16H12N2}n or {[Zn(PMBD)(DPB)]·DPB}n, 1 , where H2PMBD is 3,3′‐{[1,3‐phenylenebis(methylene)]bis(oxy)}dibenzoic acid and DPB is 1,4‐bis(pyridin‐4‐yl)benzene, has been synthesized by self‐assembly using zinc nitrate, a semi‐rigid dicarboxylic acid and a nitrogen‐containing ligand. The single‐crystal X‐ray structure determination indicates that 1 possesses an intriguing 3D architecture with a 4‐connected uninodal cds topology, which is constructed from dinuclear {Zn2} clusters and V‐shaped PMBD2? linkers. Compound 1 exhibits excellent photocatalytic activity on the degradation of the organic dyes Rhodamine B (RhB), Rhodamine 6G (Rh6G) and Methyl Red (MR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号