首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Palladium nanoparticles and nanowires electrochemically deposited onto a carbon surface were studied using cyclic voltammetry, impedance spectroscopy and atomic force microscopy. The ex situ and in situ atomic force microscopy (AFM) topographic images showed that nanoparticles and nanowires of palladium were preferentially electrodeposited to surface defects on the highly oriented pyrolytic graphite surface and enabled the determination of the Pd nanostructure dimensions on the order of 50–150 nm. The palladium nanoparticles and nanowires electrochemically deposited onto a glassy carbon surface behave differently with respect to the pH of the electrolyte buffer solution. In acid or mild acid solutions under applied negative potential, hydrogen can be adsorbed/absorbed onto/into the palladium lattice. By controlling the applied negative potential, different quantities of hydrogen can be incorporated, and this process was followed, analysing the oxidation peak of hydrogen. It is also shown that the growth of the Pd oxide layer begins at negative potentials with the formation of a pre-monolayer oxide film, at a potential well before the hydrogen evolution region. At positive potentials, Pd(0) nanoparticles undergo oxidation, and the formation of a mixed oxide layer was observed, which can act as nucleation points for Pd metal growth, increasing the metal electrode surface coverage. Depending on thickness and composition, this oxide layer can be reversibly reduced. AFM images confirmed that the PdO and PdO2 oxides formed on the surface may act as nucleation points for Pd metal growth, increasing the metal electrode surface coverage. Dedicated to Professor Dr. Algirdas Vaskelis on the occasion of his 70th birthday.  相似文献   

2.
The electrochemical quartz crystal microbalance (EQCMB) method has been used to study the processes of hydrogen absorption/desorption in Pd-Ni alloy electrodes. It was found that hydrogen electrosorption is accompanied by an additional frequency shift, attributed to the stresses generated inside the alloy. The influence of stresses on the EQCMB response depends on the amount of absorbed hydrogen and the alloy composition. From the comparison of the EQCMB results with Pd-Ni alloy absorption capabilities data, it was concluded that the decrease of the hydrogen sorption capacity at a Ni content of ca. 25–30 at% is due to an excessive generation of stresses in the alloy lattice. Also, a dependency of the rate of hydrogen absorption in Pd-Ni alloys on potential is reported. Electronic Publication  相似文献   

3.
A nanostructured Ni/Pd-Ni catalyst with high activity for methanol oxidation in alkaline solution was prepared by electrodeposition followed by galvanic replacement, that is, electrodeposition of Ni-Zn on a Ni coating with subsequent replacement of the Zn by Pd at the open circuit potential in a Pd-containing alkaline solution. The surface morphology and composition of the coatings were examined by energy dispersive X-ray spectroscopy and scanning electron microscopy. The Ni/Pd-Ni coatings were porous and were composed of discrete Pd nanoparticles of about 58 nm. The electrocatalytic activity of the Ni/Pd-Ni electrodes for the oxidation of methanol was examined by cyclic voltammetry and electrochemical impedance spectroscopy. The onset potentials for methanol oxidation on Ni/Pd-Ni were 0.077 V and 0.884 V, which were lower than those for flat Pd and smooth Ni electrodes, respectively. The anodic peak current densities of these electrodes were 4.33 and 8.34 times higher than those of flat Pd (58.4 mA/cm2 vs 13.47 mA/cm2) and smooth Ni (58.4 mA/cm2 vs 7 mA/cm2). The nanostructured Ni/Pd-Ni electrode is a promising catalyst for methanol oxidation in alkaline media for fuel cell application.  相似文献   

4.
Palladium acetate and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) were dissolved in chloroform to form a homogeneous solution. Using this solution, thin polymer template film with embedded Pd catalyst was coated on a porous α-Al2O3 hollow fiber substrate. The Pd in the template film was used as the catalyst for electroless plating of Pd membranes. After the template was removed by heat treatment, the thin Pd membranes without any intermediate layers and substrate penetration were synthesized successfully. The as-synthesized Pd composite membranes of thickness less than 5 μm not only have a very high hydrogen permeance/permeability but also have a good hydrogen selectivity. Moreover, the good membrane stability was verified by the long-term operation under the condition of hydrogen permeation and the gas exchange cycles between pure hydrogen and pure helium. The good membrane stability was interpreted by estimating the shear stress of the special membrane configuration with small gap between Pd membrane and porous substrate layer.  相似文献   

5.
纳米钯膜电极的制备、结构表征和特殊反应性能   总被引:11,自引:0,他引:11  
用循环伏安方法制备纳米钯膜电极,运用扫描隧道显微镜和原位红外光谱等方法研究其结构和反应性能.STM图像表明,制备的纳米钯膜具有特殊的层状结构,纳米级厚度的层状晶体由直径6nm左右的Pd微晶聚集而成.发现当钯膜厚度为几个纳米时,CO的吸附表现出异常红外效应,即红外谱峰反向和红外吸收显著增强(增强因子可达42.6).纳米钯膜电极对氢的反应也具有特殊的性能,与氢向钯晶格扩散吸收过程相比较,氢吸脱附的表面过程成为主要反应.研究结果还指出,纳米钯膜电极的异常红外效应和对氢反应的特殊性能与钯膜厚度密切关联,并可归结为钯膜材料的纳米尺度效应.  相似文献   

6.
Electrosorption of hydrogen into palladium-gold alloys   总被引:1,自引:0,他引:1  
Hydrogen electrosorption into Pd-Au alloys has been studied in acidic solutions (1 M H2SO4) using cyclic voltammetry. Pd-Au electrodes with limited volume were prepared by electrochemical co-deposition. It was found that the maximum H/(Pd+Au) ratios decrease monotonically with increasing gold content and reach zero at ca. 70 at% Au. Similarly to the case of Pd limited volume electrodes, two peaks in the hydrogen region, corresponding to two types of sorbed hydrogen, are observed on voltammograms for Pd-rich alloys. The hydrogen capacity, H/(Pd+Au), measured electrochemically, depends on the sweep rate in the cyclic voltammetry experiments, which suggests that two different mechanisms for hydrogen desorption from the Pd-Au alloy are possible. After a strong decrease of Pd concentration at the electrode surface, caused by long cyclic polarization to sufficiently anodic potentials, the amount of absorbed hydrogen is still significant for alloys initially rich in Pd. The results obtained from CO adsorption experiments suggest that only Pd atoms are active in the hydrogen absorption/desorption process. Electronic Publication  相似文献   

7.
Onion-like mesoporous carbon vesicle (MCV) with multilayer lamellar structure was synthesized by a simply aqueous emulsion co-assembly approach. Palladium (Pd) nanoparticles were deposited on the MCV matrix (Pd/MCV) by chemical reduction of H2PdCl4 with NaBH4 in aqueous media. Pd(X)/MCV (X wt.% indicates the Pd loading amount) nanocomposites with different Pd loading amount were obtained by adjusting the ratio of precursors. The particular structure of the MCV results in efficient mass transport and the onion-like layers of MCV allows for the obtainment of highly dispersed Pd nanoparticles. The introduction of Pd nanoparticles on the MCV matrix facilitates hydrazine oxidation at more negative potential and delivers higher oxidation current in comparison with MCV. A linear range from 2.0 × 10−8 to 7.1 × 10−5 M and a low detection limit of 14.9 nM for hydrazine are obtained at Pd(25)/MCV nanocomposite modified glassy carbon (GC) electrode. A nonenzymatic amperometric sensor for hydrogen peroxide based on the Pd(25)/MCV nanocomposite modified GC electrode is also developed. Compared with MCV modified GC electrode, the Pd(25)/MCV nanocomposite modified GC electrode displays enhanced amperometric responses towards hydrogen peroxide and gives a linear range from 1.0 × 10−7 to 6.1 × 10−3 M. The Pd(25)/MCV nanocomposite modified GC electrode achieves 95% of the steady-current for hydrogen peroxide within 1 s. The combination of the unique properties of Pd nanoparticles and the porous mesostructure of MCV matrix guarantees the improved analytical performance for hydrazine and hydrogen peroxide.  相似文献   

8.
The electrochemical quartz crystal microbalance (EQCMB) method has been used to evaluate the processes which occur in/on the palladium electrode in basic solutions. Hydrogen electrosorption in palladium is accompanied by an additional frequency shift that can be attributed to the stresses generated inside the Pd metal. A non-linear dependence between the mass change and the charge consumed during hydrogen oxidation in the Pd electrode has been found for hydrogen absorbed in the α- and β-phases. This effect precludes the objective estimation of the amount of hydrogen absorbed inside the Pd electrode. The EQCMB method has been used, however, for studying the surface electrode processes on the Pd electrode, i.e. specific anion adsorption, surface oxidation and dissolution. Also, the structure of the palladium oxide formed on the Pd surface during electrochemical oxidation is discussed in this paper and the effect of the anodic limiting potential on the oxide structure is reported. Received: 10 August 1999 / Accepted: 24 September 1999  相似文献   

9.
The hydrolysis reaction of aluminum can be decoupled into a battery by pairing an Al foil with a Pd‐capped yttrium dihydride (YH2–Pd) electrode. This hydrolysis battery generates a voltage around 0.45 V and leads to hydrogen absorption into the YH2 layer. This represents a new hydrogen absorption mechanism featuring electrical energy generation during hydrogen absorption. The hydrolysis battery converts 8–15 % of the thermal energy of the hydrolysis reaction into usable electrical energy, leading to much higher energy efficiency compared to that of direct hydrolysis.  相似文献   

10.
应用改进的多元醇法,分步还原制备表面富Pd的N iPd双元合金催化剂.研究表明:由于Pd较容易还原成核,且与N i的合金化程度低,Pd难以在N i颗粒表面实现单层包覆形成N i@Pd核壳结构,而是近似以单相的低合金化形式存在于N i颗粒表面,即形成N i@Pd(N i)的结构.与Pd/C相比,制备的N i@Pd(N i)/C催化剂,其Pd表面的氢吸附峰与吸收峰分辨清晰,含氧化物的脱附峰向正电势移动,氧还原活性显著提高.另外,N i的存在使Pd的抗甲醇性能明显增强,从而有望作为直接甲醇燃料电池的阴极催化剂.  相似文献   

11.
A dense Ni-BaZr0.1Ce0.7Y0.2O3-δ (BZCY) cermet hollow fiber is fabricated by sintering NiO-BZCY hollow fiber precursors prepared by phase inversion method in 5%H2/95%Ar and its hydrogen permeation performance is investigated. The Ni-BZCY hollow fiber membrane possesses a “sandwich” structure. Finger-like structures are observed near both the inner and outer surfaces, while a dense layer is present in the center part. With 200 mL/min wet 20%H2/80%N2 on the shell side and 150 mL/min high purity Ar on the core side, the hydrogen permeation flux through the Ni-BZCY hollow fiber membrane at 900 oC is 0.53 μmol/cm2s. Owing to a high packing density, the hydrogen permeation flux per unit volume is greatly improved and membrane components composed of an assembly of hollow fibers may be applied in industrial hydrogen separation.  相似文献   

12.
MgH2 is a promising and popular hydrogen storage material. In this work, the hydrogen desorption reactions of a single Pd atom adsorbed MgH2(110) surface are investigated by using first-principles density functional theory calculations. We find that a single Pd atom adsorbed on the MgH2(110) surface can signi cantly lower the energy barrier of the hydrogen desorption reactions from 1.802 eV for pure MgH2(110) surface to 1.154 eV for Pd adsorbed MgH2(110) surface, indicating a strong Pd single-atom catalytic effect on the hydrogen desorption reactions. Furthermore, the Pd single-atom catalysis significantly reduces the hydrogen desorption temperature from 573 K to 367 K, which makes the hydrogen desorption reactions occur more easily and quickly on the MgH2(110) surface. We also discuss the microscopic process of the hydrogen desorption reactions through the reverse process of hydrogen spillover mechanism on the MgH2(110) surface. This study shows that Pd/MgH2 thin films can be used as good hydrogen storage materials in future experiments.  相似文献   

13.
The effect of temperature on hydrogen and deuterium electrosorption into a palladium LVE (limited-volume electrode) has been investigated. A decrease in hydrogen capacity (H/Pd ratio) with increasing temperature has been observed. Temperature strongly influences the plots of measured H(D)/Pd values vs. potential scan rate. In addition, hydrogen absorption was found to be dependent on the composition of the surrounding electrolyte solution. These results have confirmed the hypothesis that two different mechanisms of hydrogen desorption from the palladium electrode take place, namely electrochemical oxidation and non-electrochemical recombination. Further, the ratio between the rate constants for these two processes has been found to change with temperature. Electronic Publication  相似文献   

14.
The kinetics of electroreduction of Pd(II) complexes with -alanine, Pd(ala)2, is studied on a rotating Pd disk electrode in solutions of pH 8–13 containing large excess of -alanine and various supporting electrolytes (NaF, Na2SO4, NaClO4). On a Pd electrode, complexes Pd(ala)2 undergo reduction at potentials much more negative than on an Hg electrode. This is attributed to the chemisorption of water on the Pd electrode, which hampers adsorption of Pd(ala)2 that take part in the slow electrochemical stage. As with the Hg electrode, perchlorate ions hinder the Pd(ala)2 reduction on a Pd electrode. Studying adsorption of Pd(ala)2 on a Pd electrode is hampered by parallel processes of hydrogen adsorption and absorption.  相似文献   

15.
胡小娟  严文俊  丁维华  俞健  黄彦 《催化学报》2013,34(9):1720-1729
以多孔Al2O3陶瓷为基体材料, 采用浸渍法担载NiO后用2B铅笔修饰NiO/Al2O3表面, 通过化学镀法沉积约5 μm厚的金属钯, 还原后成功制得Pd/Pencil/Ni/Al2O3膜. 为进行对比, 还制备了未担载镍的Pd/Pencil/Al2O3膜. 膜的表面和断面形貌分别采用扫描电镜和金相显微镜观测, 膜的透氢动力学通过H2/N2单气体法测试, 并以成分为H2 77.8%, CO 5.2%, CO2 13.5%和CH4 3.5%的原料氢测定了膜的氢分离效果. 结果表明, 未载镍的Pd/Pencil/Al2O3膜只具有氢分离作用, 而Pd/Pencil/Ni/Al2O3膜还可以有效地将钯膜泄漏的CO和CO2转化为甲烷, 因而成为双功能型钯膜. 这种双功能膜尤其适用于面向质子交换膜燃料电池(PEMFC)的氢气分离, 既有效解决了PEMFC对氢燃料中CO格外敏感的难题, 又提高了对钯膜缺陷的容忍度, 因而延长了钯膜的使用寿命.  相似文献   

16.
Thin Pd membranes were in situ deposited on macroporous stainless steel (MPSS) tubes using an improved electroless plating method consisting of material filling in the substrate pores, Pd plating on the filled substrate, and recovery and activation of the substrate pores. The Pd/MPSS composite membranes resulted from the filling materials of both aluminum hydroxide gel and Pd/aluminum hydroxide gel have been studied in detail and compared with each other. The hydrogen permeation mechanism through both membranes may be controlled by surface reactions, while the hydrogen permeation flux and activation energy for the membrane resulted from Pd/aluminum hydroxide gel are higher than these for the membrane resulted from aluminum hydroxide gel. In the case of the former membrane, which is almost pinhole free, the hydrogen permeation flux is as high as 0.302 mol/(m2 s) with a pressure difference of 100 kPa at 773 K. Good membrane stability is also proven by the unchanged membrane surface morphology, the steady hydrogen permeance, and the complete hydrogen selectivity. The deposition mechanism of the membrane has been proposed and interpreted in detail.  相似文献   

17.
针对氢在镀锌层中的扩散渗透性,采用电化学氢渗透技术对Fe/电镀Zn双层试样进行了研究.得到了镀锌层的厚度对镀层氢扩散系数以及氢稳态渗透通量的影响方式.研究结果表明,电镀锌层中氢扩散系数约为10-11cm2·s-1数量级,镀锌层能够阻滞氢的扩散渗透.相应地,随镀层厚度增大,试样氢稳态渗透通量和氢有效扩散系数减小  相似文献   

18.
通过液相还原法制备了具有不同原子比例的Pd-Ni/C催化剂,并且使用X射线衍射(XRD)、透射电子显微镜(TEM)和X射线光电子能谱(XPS) 等表征手段对制备的催化剂进行了表征,总结了Ni的掺杂对Pd-Ni合金纳米粒子的尺寸及晶体结构的影响。电化学测试结果表明:适量的Ni的掺杂不但能够增强催化剂对甲酸催化氧化的活性,而且还能够提高催化剂的稳定性。因此,Pd-Ni/C催化剂是一类具有潜在应用前景的直接甲酸燃料电池阳极催化剂  相似文献   

19.
钯镍合金薄膜电极上甲酸电氧化-去合金化效应   总被引:1,自引:0,他引:1  
在含PdC l2、N iSO4和乙二胺的弱碱性镀液中,于Au电极上用恒电位电沉积Pd-N i合金薄膜,后经酸性溶液中循环伏安法处理,得到去合金化的Pd-N i电极.扫描电镜以及电化学测试表明,去合金化处理使Pd-N i镀膜表面微观粗糙度增加,比表面积增大;ICP-AES和XPS分析证实合金表层N i的优先溶出造成Pd的富集.去合金化处理的Pd-N i电极电催化氧化甲酸的活性明显优于未处理的Pd-N i电极和多晶Pd电极.  相似文献   

20.
张峰  陈成  潘博  许睿  马桂林 《化学学报》2007,65(21):2473-2478
采用溶胶-凝胶法合成了La0.8Sr0.2Ga0.8Mg0.2O3-a陶瓷样品, 用XRD, DSC-TGA, SEM, 交流阻抗谱, 气体浓差电池及气体电化学透过等方法对样品的结构和性质进行了表征和测试. 首次对该样品的质子导电性能进行了研究. 该陶瓷样品具有良好的微观结构, 相对密度达95.1%; 氢浓差电池电动势的实测值与理论值吻合, 离子迁移数为1; 在干燥的氧气气氛中是一个纯的氧离子导体; 氢的电化学透过速率的实测值与理论值吻合, 证明该样品在氢气气氛中几乎是一个纯的质子导体, 质子电导率在1000 ℃时高达0.14 S•cm-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号