首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
纳米电化学生物传感器   总被引:4,自引:0,他引:4  
纳米电化学生物传感器是将纳米材料作为一种新型的生物传感介质,与特异性分子识别物质如酶、抗原/抗体、DNA等相结合,并以电化学信号为检测信号的分析器件。本文简要介绍了生物传感器的分类和纳米材料在电化学生物传感器中的应用及其优势,综述了近年来各类纳米电化学生物传感器在生物检测方面的研究进展,包括纳米颗粒生物传感器,纳米管、纳米棒、纳米纤维与纳米线生物传感器,以及纳米片与纳米阵列生物传感器等。  相似文献   

2.
21世纪的第一个十年被称为"传感的十载".功能纳米材料为灵敏的生物传感器件(包括光学和电生物传感)的制备提供了优秀的平台.这方面的大多数工作主要聚焦于不同纳米材料的生物功能化,例如金属纳米粒子、半导体纳米粒子和碳纳米粒子,功能化方式包括物理吸附、静电结合、特异性识别或共价键合.这些生物功能化纳米材料可以用作催化剂、电导体、光发射剂、载体或示踪剂,以获取被放大的检测信号、稳定的识别探针或生物传感界面.设计的信号放大策略已经极大地促进了不同领域中稳定、特异、具有选择性和灵敏的生物传感器的发展.本文介绍了基于功能纳米材料的一些生物传感新原理和检测新策略,也讨论了纳米材料的生物功能化方法和生物传感在蛋白质的免疫分析、DNA检测、糖分析和细胞传感中的应用.  相似文献   

3.
荧光纳米生物传感平台由于具有灵敏度高、选择性好、操作简单、成本低、实时监测等特点,吸引了广泛的关注。近年来,随着纳米技术的飞速发展,具有纳米结构的材料(纳米材料)在生物传感领域显示出独特的优势。与传统材料相比,纳米材料显示出独特的物化性质,如光学、电学、机械、催化和磁性等。金属(如Au、Ag、Cu及其合金)纳米簇(MNCs)是纳米科学和纳米技术领域中一种新颖的多功能纳米材料,其通常由几个到几十个金属原子组成,其核的尺寸通常小于2 nm。由于其发光能力强、易于合成和进行表面功能化、生物相容性好、尺寸超小、毒性低等优点,金属纳米簇在能源催化、医学诊断、电子器件、生物传感等领域得到了广泛的应用。此外,金属纳米簇的荧光性能极佳(如大的斯托克斯位移、可调节的荧光、高的光学稳定性和荧光量子产率等),因此被作为荧光纳米探针广泛应用于生物传感领域。该综述介绍了近年来基于不同构建机制的金属纳米簇基的传感平台的研究进展,及其在检测离子、生物分子、pH和温度传感等方面的应用。相信该综述能为从不同传感机理构建更具前景的生物传感器提供一些新见解和理论指导。  相似文献   

4.
DNA纳米技术在生物传感领域引起人们广泛的研究兴趣,现已构建多种二维和三维DNA功能纳米结构.滚环扩增(RCA)作为一种等温扩增技术,为DNA纳米材料的设计和自组装提供了新途径.该文通过RCA一锅法合成封装有辣根过氧化物酶(HRP)的DNA纳米花(HRP@DNFs),进一步基于双核酸适体识别构建光热生物传感器,用于肝细...  相似文献   

5.
近年来生物传感新体系的出现,极大地推动了生物医学、分析、环境等研究领域的发展.由于纳米材料具有一些独特的理化性质,常作为载体材料、信号分子等被广泛应用于构建光学生物传感体系.主要介绍了基于金纳米粒子、石墨烯、碳纳米管、量子点、硅纳米粒子几种常见纳米材料构建的光学传感体系及其在生化分析中的应用.分析讨论了这些体系的原理和实际应用,并展望了其研究和应用前景.  相似文献   

6.
迟景元  李晶  任少康  苏邵  汪联辉 《化学学报》2019,77(12):1230-1238
DNA-二维纳米片层材料传感平台结合DNA分子特异性识别能力与二维纳米片层材料优越的物理、化学特性,已成为化学/生物传感器领域重要的研究方向之一.鉴于二维纳米片层材料领域的快速发展,首先介绍了DNA-二维纳米片层材料传感平台的构筑机理,随后重点综述了该传感平台在化学、生物目标物分析检测中的应用研究,并对该类传感平台的应用前景做了展望.  相似文献   

7.
蒋文  袁若 《分析测试学报》2011,30(11):1200-1206
纳米尺度上的生物分析化学是当今国际生物分析领域研究的前沿和热点.该文阐述了纳米粒子在电化学免疫传感器及电化学DNA传感器领域的应用,着重介绍了以纳米材料为载体设计新型的具有生物分子识别和电信号增强作用的纳米标记粒子在构建高灵敏电化学生物传感器以及多组分同时检测中的应用.  相似文献   

8.
苏莹莹  彭天欢  邢菲菲  李迪  樊春海 《化学学报》2017,75(11):1036-1046
贵金属纳米材料具有显著的局域表面等离子体共振(LSPR)效应,可有效地将共振光子限域在金属表面.随着多种形貌贵金属纳米材料的可控合成及其功能化表面化学技术的日臻成熟,贵金属纳米材料已被广泛应用于生物标记、传感成像、分析分离及生物医学领域.从贵金属纳米等离子体材料的性质出发,综述局域表面等离子体共振材料在传感及细胞成像中的最新进展,并对基于局域表面等离子体共振材料的纳米光子学传感器未来发展前景做出展望.  相似文献   

9.
对1995~2011年间各种纳米材料,包括金属纳米粒子、量子点纳米材料、碳纳米材料、复合纳米材料等在电化学生物传感器中的应用及纳米仿生界面的构建进行了综述。  相似文献   

10.
屠闻文  雷建平  鞠熀先 《化学进展》2011,23(10):2113-2118
卟啉是一类重要的有机共轭分子,可以模拟许多酶的活性中心。一系列卟啉仿生酶已被合成,并用于模拟生物蛋白酶的催化活性,包括平面卟啉、栅栏卟啉、扩展环卟啉和三元环卟啉。在生物体内,许多金属蛋白酶经常自组装成纳米尺度的超分子结构来实现其基本的生物催化作用。卟啉可以通过共价或者非共价作用有序组装在纳米材料上,实现其模拟金属蛋白酶的功能。金属卟啉是良好的电子媒介体,对生命过程相关小分子的氧化还原具有较好的电催化活性。因此,金属卟啉纳米组装形成的纳米材料复合物可用于新型电化学生物传感器的构建。基于卟啉纳米材料复合物的光物理和光化学性质构建的新型光电化学生物传感平台已用于生物分子的检测。本文主要从卟啉仿生酶的合成、有序纳米组装和卟啉纳米复合物的生物传感进行评述,为构建新型电化学和光电化学传感器提供有用信息。  相似文献   

11.
The design and development of modern biosensors for sensitive and selective detection of various biomarkers is important in diversified arenas including healthcare, environment, and food industries etc. The requirement of more robust and reliant biosensors lead to the development of various sensing modules. The nanomaterials having specific optical, electrical, and mechanical strength can pave the way towards development of ultrafast, robust, and miniaturized modules for biosensors. It can provide not only the point‐of‐care applicability but also has tremendous commercial as well as industrial justification. In order to improve the performance of the sensor systems, various nanostructure materials have been readily studied and applied for development of novel biosensors. In the last few years, researchers are engaged on harnessing the unique atomic and molecular properties of advance‐engineered materials including carbon nanotubes, graphene nanosheets, metal nanoparticles, metal oxide nanoparticles, and their nano‐conjugates. In view of such recent developments in nanomaterial engineering, the current review has been formulated emphasizing the role of these materials in surface engineering, biomolecule conjugation, and signal amplification for development of various ultrasensitive and robust biosensors having commercial as well as industrial viability. Attention is given on the electrochemical biosensors incorporating various nanomaterials and their conjugates. Importance of nanomaterials in the analytical performance of the various biosensor has also been discussed. To put a perceptive insights on the importance of various nanomaterials, an extended table is incorporated, which includes probe design, analyte, LOD, and dynamic range of various electrochemical biosensors.  相似文献   

12.
This review covers recent advances in the development of new designs of electrochemical sensors and biosensors that make use of electrode surfaces modification with carbon nanotubes. Applications based on carbon nanotubes-driven electrocatalytic effects, and the construction and analytical usefulness of new hybrid materials with polymers or other nanomaterials will be treated. Moreover, electrochemical detection using carbon nanotubes-modified electrodes as detecting systems in separation techniques such as high performance liquid chromatography (HPLC) or capillary electrophoresis (CE) will be also considered. Finally, the preparation of electrochemical biosensors, including enzyme electrodes, immunosensors and DNA biosensors, in which carbon nanotubes play a significant role in their sensing performance will be separately considered.  相似文献   

13.
From diagnosis of life‐threatening diseases to detection of biological agents in warfare or terrorist attacks, biosensors are becoming a critical part of modern life. Many recent biosensors have incorporated carbon nanotubes as sensing elements, while a growing body of work has begun to do the same with the emergent nanomaterial graphene, which is effectively an unrolled nanotube. With this widespread use of carbon nanomaterials in biosensors, it is timely to assess how this trend is contributing to the science and applications of biosensors. This Review explores these issues by presenting the latest advances in electrochemical, electrical, and optical biosensors that use carbon nanotubes and graphene, and critically compares the performance of the two carbon allotropes in this application. Ultimately, carbon nanomaterials, although still to meet key challenges in fabrication and handling, have a bright future as biosensors.  相似文献   

14.
Electrochemiluminescent biosensors are nowadays an established technology in the field of immunosensors and diagnostics. Along with the advent of nanotechnology, the marriage between electrochemiluminescence and nanomaterials results in promising enhancing strategies in many biosensor applications. Among nanomaterials, carbon-based ones are the most used, as (i) scaffolds, (ii) luminophores and (iii) electrode materials of the sensor. In this review, we describe the importance of a rational modification and functionalization of carbon nanomaterials to optimize electrochemiluminescence signal, and we also resume the latest and most relevant applications of electrochemiluminescent biosensors based on carbon nanomaterials.  相似文献   

15.
MicroRNA (miRNA) is an important tumor marker in the human body, and its early detection has a great influence on the survival rate of patients. Although there are many detection methods for miRNA at present such as northern blotting, real-time quantitative polymerase chain reaction, microarrays, and others, electrochemical biosensors have the advantages of low detection cost, small instrument size, simple operation, non-invasive detection and low consumption of reagents and solvents, and thus they play an important role in the early detection of cancer. In addition, with the development of nanotechnology, nano-biosensors show great potential. The application of various nanomaterials in the development of electrochemical biosensor has greatly improved the detection sensitivity of electrochemical biosensor. Among them, carbon nanomaterials which have unique electrical, optical, physical and chemical properties have attracted increasing attention. In particular, they have a large surface area, good biocompatibility and conductivity. Therefore, carbon nanomaterials combined with electrochemical methods can be used to detect miRNA quickly, easily and sensitively. In this review, we systematically review recent applications of different carbon nanomaterials (carbon nanotubes, graphene and its derivatives, graphitic carbon nitride, carbon dots, graphene quantum dots and other carbon nanomaterials) for miRNA electrochemical detection. In addition, we demonstrate the future prospects of electrochemical biosensors modified by carbon nanomaterials for the detection of miRNAs, and some suggestions for their development in the near future.  相似文献   

16.
《Analytical letters》2012,45(12):2271-2287
Abstract

Carbon nanomaterials are in the forefront of research in a variety of chemical and physical disciplines. Of these, certain nanostructures seem to be suitable for the development of electrochemical biosensors. In particular carbon nanotubes, and carbon nanofibers have specific chemical and physical characteristics that lent them ideal for the development of biosensors with unique analytical characteristics. In particular, their conductivity, surface area, inherent and induced chemical functionalities, and biocompatibility provide the grounds for the development of a new era of electrochemical biosensors. In this review, we will examine the recent developments of biosensor design based on these new nanostructures.  相似文献   

17.
《Electroanalysis》2018,30(1):2-19
Electrochemical aptasensors appear as promising tools in food analysis, able to provide sensitive, fast and cost‐effective analysis, with the added advantage of portability. Carbon nanomaterials and in particular carbon nanotubes and graphene are among the nanomaterials most often used to build electrochemical aptasensors due to their good electrical conductivity, large surface area and multiple functionalisation possibilities. This review aims to give an overview of the types of carbon nanomaterials and their composites which have been used to enhance the performance of electrochemical aptasensors. Examples are detailed for the biosensors which were tested with real food samples. In these aptasensors, carbon nanomaterials have played different roles, from facilitating the immobilization of high amounts of aptamer and enhancing the electroactive area of the sensors to roles as nanocarrier for signaling probes in amplification schemes or even as electroactive probes generating the output signal. The survey of recent literature shows a positive evolution towards increased aptasensor testing with food samples. However, many challenges remain related to the better characterization of nanomaterials used, clarifying the roles of specific components in multi‐component nanocomposites and widening the types of food matrices and analytes tested with the aptasensors. Although we are still far from knowing when these novel tools will replace classic analytical methods in food analysis, carbon nanomaterials will certainly continue to play an important role in the design of future electrochemical aptasensors for food analysis.  相似文献   

18.
Exploring bioelectroanalysis and bioelectrocatalysis in non-aqueous systems are essential for bridging the gap between laboratorial and industrial scale. Bioelectrodes based on carbon nanomaterials, such as carbon nanotubes and graphene, have been designed and fabricated with biocompatible surface functionalities. This review presents recent advances in regulation of a biocompatible microenvironment of enzyme electrodes in non-aqueous systems. We summarize the modification strategies to facilitate electron transfer and promote enrichment of hydrophobic analytes. We focus on the mining and modification for robust oxidoreductases from extremophiles to explore the biosensors in extreme conditions. Challenges and future prospects for bioelectrodes in non-aqueous systems are discussed.  相似文献   

19.
Functional nanomaterials have emerged as promising candidates in the development of an amperometric sensing platform for the detection and quantification of bioanalytes. The remarkable characteristics of nanomaterials based on metal and metal oxide nanoparticles, carbon nanotubes, and graphene ensure enhanced performance of the sensors in terms of sensitivity, selectivity, detection limit, response time, and multiplexing capability. The electrocatalytic properties of these functional materials can be combined with the biocatalytic activity of redox enzymes to develop integrated biosensing platforms. Highly sensitive and stable miniaturized amperometric sensors have been developed by integrating the nanomaterials and biocatalyst with the transducers. This review provides an update on recent progress in the development of amperometric sensors/biosensors using functional nanomaterials for the sensing of clinically important metabolites such as glucose, cholesterol, lactate, and glutamate, immunosensing of cancer biomarkers, and genosensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号