首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In this paper, smooth output feedback controllers are presented to stabilize a class of planar switched nonlinear systems with asymmetric output constraints (AOCs). A new common barrier Lyapunov function (CBLF) is developed to prevent the switched system from violating AOCs. Combining the adding a power integrator technique (APIT) and the CBLF, state feedback controllers are designed. Then, reduced-order nonlinear observers are constructed and smooth output feedback controllers are proposed to globally stabilize planar switched nonlinear systems under arbitrary switchings. Meanwhile, the system output meets the prescribed AOCs during operation. The method proposed in this paper is a unified tool because it works not only for switched nonlinear systems with asymmetric or symmetric output constrains but also for those without output constraints. Simulations are presented to verify the proposed method.  相似文献   

2.
We present a switched control algorithm to stabilize a car-like mobile robot which possesses velocity level nonholonomic constraint. The control approach rests on splitting the system into several second-order subsystems and then stabilizing the system sequentially using finite-time controllers, finally resulting in the mobile robot being moved from one point to another point. State dependent switching control is employed in which the controllers switches on a thin surface in the state-space. Robustness analysis is presented by redefining the switching signal using relaxed switching surface. Both, non-robust and robust controllers are validated through numerical simulation.  相似文献   

3.
We investigate the tracking control problem for switched linear time-varying delays systems with stabilizable and unstabilizable subsystems. Sufficient conditions for the solvability of the tracking control problem are developed. The tracking control problem of a switched time-varying delays system with stabilizable and unstabilizable subsystems is solvable if the stabilizable and unstabilizable subsystems satisfy certain conditions and admissible switching law among them. Average dwell time approach and piecewise Lyapunov functional methods are utilized to the stability analysis and controller design. By introducing the integral controllers and free weighting matrix scheme, some restricted assumptions imposing on the switched systems are avoided. A simulation example shows the effectiveness of the proposed method.  相似文献   

4.
A methodology to design guaranteed cost H controllers for a class of switched systems with polynomial vector fields is proposed. To this end, we use sum of squares programming techniques. In addition, instead of the customary Carathéodory solutions, the analysis is performed in the framework of Filippov solutions which subsumes solutions with infinite switching in finite time and sliding modes. Firstly, conditions assuring asymptotic stability of Filippov solutions pertained to a switched system defined on semi-algebraic sets are formulated. Accordingly, we derive a set of sum of squares feasibility tests leading to a stabilizing switching controller. Finally, we propose a scheme to synthesize stabilizing switching controllers with a guaranteed cost H disturbance attenuation performance. The applicability of the proposed methods is elucidated thorough simulation analysis.  相似文献   

5.
This paper is concerned with exponential quasi-dissipativity for switched nonlinear systems using multiple storage functions and multiple supply rates. First, a new concept of exponential quasi-dissipativity for a switched nonlinear system is proposed. In contrast with dissipative system which does not produce energy in some abstract sense, the supply rate of quasi-dissipativity is the sum of the conventional dissipativity supply rate and the constant supply rate. This means quasi-dissipative system can produce energy by itself. Each active subsystem is only required to be exponentially quasi-dissipative, while the energy changing of each inactive subsystem characterized by cross-supply rates is considered as the transformation of “energy” from the active subsystem. By weakening the conventional dissipation inequality, a broader class of open-loop systems and controllers are admissible, leading to broader application. Second, the ultimate boundedness property is obtained under some constraints on the energy changing of inactive subsystems. Third, the exponential quasi-dissipativity conditions for switched nonlinear systems are obtained by the design of a state-dependent switching law. In particular, the sufficient conditions of exponential quasi-passivity and exponential finite power gain for switched nonlinear systems are given thereby providing generalizations of KYP conditions and HJI inequality. Finally, the effectiveness of the obtained results is verified by two examples.  相似文献   

6.
Input-to-state stability (ISS) analysis and stabilization are concerned in this paper for switched nonlinear positive systems (SNPS), where the deterministic and random switching are both included. For general SNPS, switched affine nonlinear positive systems (SANPS) and switched linear positive systems (SLPS) with deterministic and some kinds of random ”slow” switching, some criterions on ISS are provided. From the criterions for SANPS and SLPS, the ISS properties can be judged just by the differential, algebraic and switching characteristics of the systems. Further, based on the criterions for SANPS and SLPS, some state feedback controllers are designed such that the closed-loop systems be positive, ISS or ISS in some stochastic senses. Four simulation examples verify the validity of our results.  相似文献   

7.
The aim of this paper is to present a generic methodology to design sliding mode controllers for multivariable switched systems affine in control such as dc–dc power converters. An original formulation of the so-called reachability condition, suitable for this class of systems, is established. Based on the choice of a Lyapunov-like function and parameterized by a single weighting matrix, it allows several kinds of control strategies to be derived, namely conventional piecewise continuous strategies as well as discrete (Boolean) strategies. Its application to the important subclass of linear time invariant systems is investigated more specifically. In the Boolean case, the present approach is also compared to another hybrid one called the stabilizing approach. Eventually, its efficiency as a design methodology, as well as the performance of the resulting control, are shown by simulating it on non-trivial examples of power converters.  相似文献   

8.
This paper is concerned with the event-triggered control of switched linear systems. The coupling of system switching and event-triggered communication raises two phenomena: (1) the update of controller cannot always catch up with the active subsystem; (2) the switching may lead to additional triggers. The first phenomenon is called the asynchronous switching induced by network communication and the second one brings great difficulty to avoid the Zeno behavior of event-triggered mechanism (ETM). To address the above problem, we propose a new ETM which contains the switching signal of models and controllers and the discontinuity of triggering error at switching time instants. A relative threshold strategy, combined with a jump function, is designed as a new threshold function. By introducing a compensation term, the linear feedback control law is extended to avoid the Zeno behavior of ETM and improve the solvability of control algorithm. Based on the proposed event-triggered control scheme, the exponential stabilization of switched systems is achieved with relaxed constraints on the triggering and switching conditions. The obtained results are validated by a numerical example.  相似文献   

9.
In the paper, commuting and stable feedback design for switched linear systems is investigated. This problem is formulated as to build up suitable state feedback controller for each subsystem such that the closed-loop systems are not only asymptotically stable but also commuting each other. A new concept, common admissible eigenvector set (CAES), is introduced to establish necessary/sufficient conditions for commuting and stable feedback controllers. For second-order systems, a necessary and sufficient condition is established. Moreover, a parametrization of the CAES is also obtained. The motivation comes from stabilization of switched linear systems which consist of a family of LTI systems and a switching law specifying the switching between them, where if all the subsystems are stable and commuting each other, then the total system is stable under arbitrary switching.  相似文献   

10.
研究了一类时变时滞切换控制系统的动态回馈控制器的设计问题.其中,控制输入具有导数有界的时变时滞.利用多Lyapunov泛函方法,结合不等式的放缩技巧,用线性矩阵不等式(LMI)的形式给出了确保系统渐近稳定的控制器存在的充分条件,同时设计出了相应的有效切换律.最后给出实例说明了本文控制器设计的有效性.  相似文献   

11.
This paper investigates observer-based model predictive control (MPC) for switched systems with a mixed time/event-triggering mechanism. The problem of predictive control that can achieve receding horizon optimization is considered and solved by minimizing an upper bound of the quadratic cost function. Since the system state may not be fully measured in practice, state observers are employed to estimate. A mixed mechanism including adaptive event-triggering and time-triggering is proposed, which can be switched determined by a threshold describing system performance to better balance system resource utilization and performance requirements. Then, a closed-loop switched system subject to networked-time-delay is modeled. Piecewise Lyapunov function technique and average dwell time approach are utilized to ensure asymptotical stability. Afterwards, MPC controller construction problem is turned into a LMIs feasibility problem. A new solving method of sufficient conditions for co-design of the state observers, feedback controllers and mixed triggering mechanism is derived. Lastly, simulation examples illustrate the correctness and advantages of research content.  相似文献   

12.
This work proposes the command tracking problem for uncertain Euler–Lagrange (EL) systems with multiple partial loss of effectiveness (PLOE) actuator faults. Compared to existing fault-tolerant controllers for EL systems, the proposed adaptive controller accounts for parametric uncertainties in the system and multiple time-varying actuator fault parameters. The proposed method can also handle an infinite number of fault cases. The closed-loop fault-tolerant system is treated as a switched dynamical system, and a switched system stability is established using multiple Lyapunov functions. It is shown that all signals are bounded in each sub-interval and at the switching instances, and asymptotic tracking can be obtained only for a finite number of fault occurrences, whereas tracking error is bounded for the infinite case. Finally, a simulation example on a robotic manipulator is presented to show the effectiveness of the proposed method.  相似文献   

13.
In this paper, the problems of asymptotical stability and stabilization of a class of switched neutral control systems are investigated. A delay-dependent stability criterion is formulated in term of linear matrix inequalities (LMIs) by using quadratic Lyapunov functions and inequality analysis technique. The corresponding switching rule is obtained through dividing the state space properly. Also, the synthesis of stabilizing state-feedback controllers are done such that the close-loop system is asymptotically stable. Two numerical examples are given to show the proposed method.  相似文献   

14.
The robust exponential stabilization for a class of the uncertain switched neutral nonlinear systems with time-varying delays based on the sampled-data control is investigated in this paper. The closed-loop system with sampled-data control is modeled as a continuous time system with a time-varying piecewise continuous control input delay. Considering the relationship between the sampling period and the dwell time of two switching instants, sampling interval with no switching and sampling interval with one switching are discussed, respectively. By Wirtinger-based inequality, Wirtinger-based double integral inequality, and free-weighting matrix technique, some delay-dependent sufficient conditions are given to guarantee the exponential stability of uncertain switched neutral nonlinear systems under asynchronous switching. In addition, sampled-data controllers can also be designed by special operations of matrices. Finally, two numerical examples are used to show the effectiveness of the approach proposed in this paper.  相似文献   

15.
This paper studies the asymptotic stability problem for a class of impulsive switched systems with time invariant delays based on linear matrix inequality (LMI) approach. Some sufficient conditions, which are independent of time delays and impulsive switching intervals, for ensuring asymptotical stability of these systems are derived by using a Lyapunov–Krasovskii technique. Moreover, some appropriate feedback controllers, which can stabilize the closed-loop systems, are constructed. Illustrative examples are presented to show the effectiveness of the results obtained.  相似文献   

16.
In the analysis of complex, large-scale dynamical systems it is often essential to decompose the overall dynamical system into a collection of interacting subsystems. Because of implementation constraints, cost, and reliability considerations, a decentralized controller architecture is often required for controlling large-scale interconnected dynamical systems. In this paper, a novel class of fixed-order, energy-based hybrid decentralized controllers is proposed as a means for achieving enhanced energy dissipation in large-scale lossless and dissipative dynamical systems. These dynamic decentralized controllers combine a logical switching architecture with continuous dynamics to guarantee that the system plant energy is strictly decreasing across switchings. The general framework leads to hybrid closed-loop systems described by impulsive differential equations. In addition, we construct hybrid dynamic controllers that guarantee that each subsystem–subcontroller pair of the hybrid closed-loop system is consistent with basic thermodynamic principles. Special cases of energy-based hybrid controllers involving state-dependent switching are described, and an illustrative combustion control example is given to demonstrate the efficacy of the proposed approach.  相似文献   

17.
For a class of discrete-time high-order switched neural networks with time-varying delays, the global exponential synchronization (GES) problem and its application in audio encryption are addressed. In this work, the state feedback controllers are designed to ensure the GES of response and drive systems, and the controller gains are directly computed by the network parameters. Then, a numerical example is presented to explain the correctness of the synchronization theory. Moreover, a technique to audio encryption/decryption is proposed, and it is applied to a practical example to verify the applicability of the technique. The advantages of this paper are as follows: (i) GES criterion containing a group of simple matrix inequalities is established without the construction of a Lyapunov–Krasovskii functional (LKF), which is not always obvious; (ii) the controller gains are directly represented by the parameters in the network, and then it is easy to apply them to the audio encryption.  相似文献   

18.
非线性离散开关系统的鲁棒镇定问题   总被引:1,自引:0,他引:1  
利用切换Lypunov函数方法,把非线性离散开关系统的鲁棒镇定问题转化成一个矩阵不等式的最优解问题,给出了在任意切换下具有非线性扰动的线性开关系统的可鲁棒镇定的充分条件,并进一步讨论了同类时滞开关系统的鲁棒镇定问提.最后把以上结论推广到广义开关系统,由于结果均以矩阵不等式形式给出,便于验证和实现.  相似文献   

19.
We present a switched control law for stabilizing an underactuated underwater vehicle (UUV) moving in a horizontal plane in a neutrally buoyant condition. The control law consists of a sequential series of control actions, each of which achieves a certain objective, finally resulting in the system being moved to the origin. Finite-time controllers are employed at each stage to achieve the desired objective. Simulation results are presented to validate the control law.  相似文献   

20.
In this paper, we study the asymptotic stability of continuous-time positive switched linear systems for the case when each subsystem is only stable. By using the so-called “joint linear copositive Lyapunov function” (JLCLF) generalizing the common linear copositive Lyapunov function, we show that the system remains asymptotically stable under appropriate switching if it has a JLCLF. Then, the main result is extended to positive switched linear systems with time delay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号