首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of mesquite gum on the interfacial tension between liquid paraffin and distilled water has been studied as a function of gum concentration, pH, and added NaCl or CaCl2. The time dependence of the reduction in interfacial tension was influenced by all three variables. Diffusion to the oil-water interface was the dominant factor in the initial decrease of interfacial tension when low mesquite gum concentrations were used. Reconformation of molecules adsorbed at the oil-water interface controlled the reduction in interfacial tension at longer times when using more concentrated gum solutions.  相似文献   

2.
A novel ternary sulfonated polyacrylamide was synthesized using 2,2′-azobis[2- methylpropionamidine] dihydrochloride and redox initiation system as initiator, respectively. The competitive adsorption of the ternary sulfonated polyacrylamide (TSPAM) and sodium dodecyl benzene sulfonate (SDBS) on the oil-water interface was investigated by equilibrium interfacial tension, interfacial viscoelasticity, zeta potendial and interfacial film strength. The SDBS molecules in the surfactant-polymer (SP) system preferentially adsorb on the oil-water interface due to the amphiphilic structure of the SDBS molecules. Electrostatic force between the charged groups of the polyacrylamide and the head groups of surfactant adsorbed on the interface in the SP system leads to the formation of the complex interface film, which is helpful to enhance the stability of the oil-water interface. The ternary sulfonated polyacrylamide (TSPAM) has a similar influence on the other interface properties with SDBS except the interfacial tension. The interfacial tension decreases and then increases with increasing of the TSPAM concentration due to the competitive adsorption of the TSPAM molecules and the SDBS molecules on the oil-water interface. Moreover, TSPAM has the more influence on the stability of oil-water interface than partially hydrolyzed polyacrylamide (HPAM) in the SP system, and the addition of TSPAM is better to improve the stability of emulsion in the SP flooding.  相似文献   

3.
We consider a system consisting of oil and water phases with nonionic surfactant distributed between them and present a model for the effect of salt on the interfacial tension. The model accounts for the salting out of surfactant from water to oil and also for the occurrence of micelles in the aqueous phase. In addition, it is shown that salting out affects micellization in interesting ways, e.g. micelles may form as the salt concentration increases even though none are present initially and then disappear at higher concentrations. The effect of chain length and head group size (and hence of HLB) on the interfacial tension is examined for surfactants of the polyoxyethylene type. The calculated interfacial tension decreases continuously and may become negative under certain condition, indicating that the oil-water interface becomes unstable and a microemulsion forms.  相似文献   

4.
The interfacial dilational viscoelastic properties of two demulsifiers with straight chain (SP-169) and branched chain (AE-121) at the oil-water interfaces were investigated by means of the longitudinal waves method and the interfacial tension relaxation method, respectively. The results obtained by the longitudinal waves method showed that the dilational viscous component for AE-121 and SP-169 also passed through a maximum value with increasing concentration. It was found that the maximum value appeared at different demulsifier concentrations during our experiment frequency; and the higher is the dilational frequency, the lower is the concentration. The influences of AE-121 and SP-169 on the dilational viscoelastic properties of the oil-water interface containing surface-active fraction from Iranian crude oil have been measured. The results clearly stated that both demulsifiers could obviously decrease the dilational elasticity of oil-water interface containing surface-active fraction. At low concentration, because of stronger adsorption ability, SP-169 has stronger ability to decreasing the dilational modulus than AE-121. We also found that the dilational modulus of the interface contained surface-active fraction passed through a minimum value with increasing demulsifier concentration for both demulsifiers. This result indicated the dosage of demulsifier had an optimum value. The results obtained by means of interfacial tension relaxation method showed that the slow relaxation processes involve mainly rearrangement in the conformation of the molecules appeared with increasing demulsifier concentration.  相似文献   

5.
Oscillatory potential and difference interfacial tension variation can be observed at an oil-water interface containing charge species when the conditions are such that hydrodynamic instabilities can occur. We propose a mechanism based on an experimental study accountable for the relaxation-type oscillations observed. It involves the coupling of a chemical reaction occurring in the bulk in the vicinity of the interface with an interfacial transfer by diffusion and adsorption-desorption processes.  相似文献   

6.
A change of oil/water interfacial tension in the presence of cationic or anionic surfactants in an organic phase was observed due to the addition of charged fine solids in the aqueous phase. The charged fine solids in the aqueous phase adsorb surfactants diffused from the oil phase, thereby causing an increase in the bulk equilibrium surfactant concentration in the aqueous phase, governed by the Stern-Grahame equation. Consequently, surfactant adsorption at the oil-water interface increases, which was demonstrated from the measured reduction of the oil-water interfacial tension. The increased surfactant partition in the aqueous phase in the presence of the charged particles was confirmed by the measured decrease in the surface tension for the collected aqueous solution after solids removal, as compared with the cases without solids addition.  相似文献   

7.
判断一种表面活性剂降低油-水界面张力性能的优劣,就需要对界面张力进行准确有效的测量。文章就不同浓度的十二烷基三甲基溴化铵(DTAB)水溶液分别与正庚烷(n-Heptane)和正十六烷(n-Hexadecane)之间的界面张力进行定量的测量,分别得到了在30℃下水-正庚烷和水-正十六烷体系的界面张力随DTAB浓度变化的曲线。结果表明,在DTAB浓度达到其所在体系中的CMC值时,水-正庚烷体系界面张力小于水-十六烷体系界面张力。DTAB具有较强的抗矿盐能力,界面张力随温度升高有所下降。  相似文献   

8.
We simulated the interface between liquid water and a stationary phase of tethered n-C18 alkyl chains at a thermodynamic state of low pressure and water vapor-liquid coexistence. The interfacial water (oxygen atom) density profile so obtained is compared with a precisely defined proximal density of water molecules (oxygen atoms) conditional on the alkyl chain configurations. Though the conventional interfacial density profile takes a traditional monotonic form, the proximal radial distribution of oxygen atoms around a specific methyl (methylene) group closely resembles that for a solitary methane solute in liquid water. Moreover, this proximal radial distribution function is sufficient to accurately reconstruct the water oxygen density profile of the oil-water interface. These observations provide an alternative interpretation to collective drying or vaporization interpretations of commonly observed oil-water interfacial profiles for which water penetration into the interfacial region plays a role.  相似文献   

9.
A combined computational and experimental approach is used to determine the interfacial thermodynamic and structural properties of the liquid 1,1,1,2-tetrafluoroethane (HFA134a)-vapor and liquid HFA134a-water (HFA134a|W) interfaces at 298 K and saturation pressure. Molecular dynamics (MD) computer simulations reveal a stable interface between HFA134a and water. The "10-90" interfacial thickness is comparable with those typically reported for organic-water systems. The interfacial tension of the HFA134a|W interface obtained from the pressure tensor analysis of the MD trajectory is in good agreement with the experimental value determined using in situ high-pressure tensiometry. These results indicate that the potential models utilized are capable of describing the intermolecular interactions between these two fluids. The tension of the HFA134a|W interface is significantly lower than those typically observed for conventional oil-water interfaces and similar to that of the compressed CO(2)-water interface, observed at moderate CO(2) pressures. The MD and tensiometric results are also compared and contrasted with the HFA134a|W and chlorofluorocarbon-water tension values estimated from a parametric relationship. This represents the first report of the interfacial and microscopic properties of the (propellant) hydrofluoroalkanes (HFA)|W interface. The results presented here are of relevance in the design of surfactants capable of forming and stabilizing water-in-HFA microemulsions. Reverse aqueous microemulsions in HFA-based pressurized metered-dose inhalers are candidate formulations for the systemic delivery of biomolecules to and through the lungs.  相似文献   

10.
The motion of an oil-water interface that mimics biological motility was investigated in a Hele-Shaw-like cell where elastic surfactant aggregates were formed at the oil-water interface. With the interfacial motion, millimeter-scale pillar structures composed of the aggregates were formed. The pillars grew downward in the aqueous phase, and the separations between pillars were roughly equal. Small-angle X-ray scattering using a microbeam X-ray revealed that these aggregates had nanometer-scale lamellar structures whose orientation correlated well with their location in the pillar structure. It is suggested that these hierarchical spatial structures are tailored by the spontaneous interfacial motion.  相似文献   

11.
以天然三萜皂苷七叶皂素为研究对象, 分别采用吊片法、 悬滴法和高速摄像机动态拍摄法探究了七叶皂素分子在气-液、 液-液、 固-液界面的界面行为. 考察了以七叶皂素为乳化剂制备乳液的性质, 以及七叶皂素对液滴在疏水固体表面润湿铺展行为的调控规律, 并从分子层次角度分析了作用机理. 结果表明, 七叶皂素能在气-液界面发生吸附, 将水的表面张力降低至42.1 mN/m, 临界胶束浓度为5×10?4 mol/L. 七叶皂素还可以在油-水界面吸附, 将亲油端插入油相, 亲水端插入水相, 形成稳定的界面膜, 降低界面张力. 以七叶皂素为乳化剂所制备的乳液, 随着浓度增大可以达到较小的粒径和较大的Zeta电势, 短时间内表现出较好的稳定性. 高浓度的七叶皂素可以很好地抑制液滴在疏水固体表面的弹跳和回缩, 达到很好的铺展效果, 有利于拓展其在诸多领域的应用.  相似文献   

12.
Various experimental methods were used to investigate interaction between polymer and anionic/nonionic surfactants and mechanisms of enhanced oil recovery by anionic/nonionic surfactants in the present paper. The complex surfactant molecules are adsorbed in the mixed micelles or aggregates formed by the hydrophobic association of hydrophobic groups of polymers, making the surfactant molecules at oil-water interface reduce and the value of interfacial tension between oil and water increase. A dense spatial network structure is formed by the interaction between the mixed aggregates and hydrophobic groups of the polymer molecular chains, making the hydrodynamic volume of the aggregates and the viscosity of the polymer solution increase. Because of the formation of the mixed adsorption layer at oil and water interface by synergistic effect, ultra-low interfacial tension (~2.0?×?10?3 mN/m) can be achieved between the novel surfactant system and the oil samples in this paper. Because of hydrophobic interaction, wettability alteration of oil-wet surface was induced by the adsorption of the surfactant system on the solid surface. Moreover, the studied surfactant system had a certain degree of spontaneous emulsification ability (D50?=?25.04?µm) and was well emulsified with crude oil after the mechanical oscillation (D50?=?4.27?µm).  相似文献   

13.
The competitive displacement of a model protein (beta-lactoglobulin) by bile salts from air-water and oil-water interfaces is investigated in vitro under model duodenal digestion conditions. The aim is to understand this process so that interfaces can be designed to control lipid digestion thus improving the nutritional impact of foods. Duodenal digestion has been simulated using a simplified biological system and the protein displacement process monitored by interfacial measurements and atomic force microscopy (AFM). First, the properties of beta-lactoglobulin adsorbed layers at the air-water and the olive oil-water interfaces were analyzed by interfacial tension techniques under physiological conditions (pH 7, 0.15 M NaCl, 10 mM CaCl2, 37 degrees C). The protein film had a lower dilatational modulus (hence formed a weaker network) at the olive oil-water interface compared to the air-water interface. Addition of bile salt (BS) severely decreased the dilatational modulus of the adsorbed beta-lactoglobulin film at both the air-water and olive oil-water interfaces. The data suggest that the bile salts penetrate into, weaken, and break up the interfacial beta-lactoglobulin networks. AFM images of the displacement of spread beta-lactoglobulin at the air-water and the olive oil-water interfaces suggest that displacement occurs via an orogenic mechanism and that the bile salts can almost completely displace the intact protein network under duodenal conditions. Although the bile salts are ionic, the ionic strength is sufficiently high to screen the charge allowing surfactant domain nucleation and growth to occur resulting in displacement. The morphology of the protein networks during displacement is different from those found when conventional surfactants were used, suggesting that the molecular structure of the surfactant is important for the displacement process. The studies also suggest that the nature of the oil phase is important in controlling protein unfolding and interaction at the interface. This in turn affects the strength of the protein network and the ability to resist displacement by surfactants.  相似文献   

14.
The influence of water soluble meat protein (WSMP) /glyceryl monostearate/glyceryl distearate ratio on the time-dependent reduction of interfacial tension at the corn oil-water Interface has been investigated at pH's 2.5, 3.5 and 9.5.The total WSMP-glycerides content was kept constant at 1.0% wt/wt. Both variables had an effect, with maximum reduction in the steady state interfacial tension occurring when using 0.5% WSMP in conjunction with 0.5% glycerides (monoglyceride/diglyceride ratio 3/1) at pH 3.5.Under these conditions the WSMP and glycerides associate to form a complex at the interface. At other WSMP/glycerides ratios the interfacial film has a more heterogeneous composition,.  相似文献   

15.
There is a close correlation between the interfacial activity and the adsorption of the surfactant at the interface, but the detailed molecular standard information was scarce. The interfacial activity of two traditional anionic surfactants sodium dodecyl benzene sulfonate (SDBS) and sodium oleate (OAS) were studied by experimental and computer simulation methods. With the spinning drop method and the suspension drop method, the interfacial tension of oil/aqueous surfactant systems was measured, and the influence of surfactant concentration and salinity on the interfacial tension was investigated. The dissipative particle dynamics (DPD) method was used to simulate the adsorption of SDBS and OAS at the oil/water interface. It was shown that it is beneficial to decrease interfacial tension if the hydrophobic chains of the surfactant and the oil have similar structure. The accession of inorganic salts causes surfactant molecules to form more compact and ordered arrangements and helps to decrease the interfacial tension. There is an osculation relation between interfacial density and interfacial activity. The interfacial density calculated by molecular simulation is an effective parameter to exhibit the interfacial activity.  相似文献   

16.
Interfacial phenomena: A solid-phase-independent strategy for tuning the surface wettability is presented. Lewis acid-base interactions at the oil-water interface can greatly decrease the liquid-liquid interfacial tension and induce oleophilic to superoleophobic wetting transition on a nonresponsive microstructured surface.  相似文献   

17.
As high polar components of crude oil, asphaltenes play a significant role in reducing oil-water interfacial tension(IFT). In this paper, the effects of asphaltenes on reducing IFT in the presence of surfactant were compared, and the mechanism of asphaltenes reducing the IFT was studied by the dynamic interfacial tension(DIFT) equation. Whether asphaltenes were added to the oil or 2,5-dimethyl-4-(4-dodecyl) benzene sodium sulfonate(p-S14-4) was added to the water phase, either of all results in the IFT reducing and the IFT is related to the coverage and the mass of asphaltenes adsorption at the interface. In the presence of asphaltenes, the adsorption of the active substances to the interface is not entirely dependent on diffusion, and the process can be divided into three regions. Region I: the IFT rapidly reducing, this process is controlled by diffusion of surfactant; Region II: the IFT reducing slowly, resulted from the lower diffusion rate that is limited due to the aggregates formed by the interaction of asphaltene-asphaltene; Region III: the interaction of asphaltene-asphaltene is broken by the interaction of surfactant-asphaltene. The asphaltene aggregates are reduced and adsorbed rapidly at the interface. Furthermore, the results reveal that the asphaltenes concentration affects the coverage rate and adsorption at the interface.  相似文献   

18.
A Sauret  C Spandagos  HC Shum 《Lab on a chip》2012,12(18):3380-3386
Control of fluid dynamics at the micrometer scale is essential to emulsion science and materials design, which is ubiquitous in everyday life and is frequently encountered in industrial applications. Most studies on multiphase flow focus on oil-water systems with substantial interfacial tension. Advances in microfluidics have enabled the study of multiphase flow with more complex dynamics. Here, we show that the evolution of the interface in a jet surrounded by a co-flowing continuous phase with an ultra-low interfacial tension presents new opportunities to the control of flow morphologies. The introduction of a harmonic perturbation to the dispersed phase leads to the formation of interfaces with unique shapes. The periodic structures can be tuned by controlling the fluid flow rates and the input perturbation; this demonstrates the importance of the inertial effects in flow control at ultra-low interfacial tension. Our work provides new insights into microfluidic flows at ultra-low interfacial tension and their potential applications.  相似文献   

19.
This publication presents a detailed experimental and theoretical study of mass transfer of triethylamine (TEA) across the n-decane/water interface. In preliminary investigations, the partition of TEA between n-decane and water is determined. Based on the experimental finding that the dissociation of TEA takes place in the aqueous and in the organic phase, we assume that the interfacial mass transfer is mainly affected by adsorption and desorption of ionized TEA molecules at the liquid/liquid interface. Due to the amphiphilic structure of the dissociated TEA molecules, a dynamic interfacial tension measurement technique can be used to experimentally determine the interfacial mass transport. A model-based approach, which accounts for diffusive mass transport in the finite liquid bulk phases and for adsorption and desorption of ionized TEA molecules at the interface, is employed to analyze the experimental data. In the equilibrium state, the interfacial tension of dissociated TEA at the n-decane/water interface can be adequately described by the Langmuir isotherm. The comparison between the theoretical and the experimental dynamic interfacial tension data reveals that an additional activation energy barrier for adsorption and desorption at the interface has to be regarded to accurately describe the mass transport of TEA from the n-decane phase into the aqueous phase. Corresponding adsorption rate constants can be obtained by fitting the theoretical predictions to the experimental data. Interfacial tension measurements of mass transfer from the aqueous into the organic phase are characterized by interfacial instabilities caused by Marangoni convection, which result in an enhancement of the transfer rate across the interface.  相似文献   

20.
Solid-stabilized emulsions are obtained by shearing a mixture of oil, water, and solid colloidal particles. In this article, we present a large variety of materials, resulting from a limited coalescence process. Direct (o/w), inverse (w/o), and multiple (w/o/w) emulsions that are surfactant-free and monodisperse were produced in a very wide droplet size range, from micrometers to centimeters. These materials exhibit original properties compared with surfactant-stabilized emulsions: outstanding stability with respect to coalescence and unusual rheological behavior. For such systems, the elastic storage modulus G' is not controlled by interfacial tension but by the interfacial elasticity resulting from the strong adhesion between the solid particles adsorbed at the oil-water interface. Due to the wide accessible droplet size range, concentrated emulsions can be extremely fluid while emulsions with low droplet volume fraction can behave as solids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号