首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 844 毫秒
1.
离子液体在分离领域的研究进展   总被引:2,自引:0,他引:2  
室温离子液体,又称离子液体,是一种在室温及接近室温的环境中完全以离子状态存在的液态物质.由于其具有不可燃、蒸汽压极低、黏度大、导电性和溶解能力好、高温稳定等特点,已被广泛应用于有机合成、催化、电化学、分析化学等领域.本文侧重介绍离子液体在样品预处理、毛细管电泳、高效液相色谱、气相色谱、质谱等分离领域的最新研究进展,并对其发展方向进行了展望.  相似文献   

2.
Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid–liquid and gas–liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid–liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents.  相似文献   

3.
The synthesis of new ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions is described. The physico-chemical properties (conductivity, viscosity, electrochemical and thermal stability) of this new generation of ionic liquids (molten salts) are discussed. FAP-ionic liquids show an excellent hydrolytic stability, low viscosity and high electrochemical and thermal stability that makes them attractive for use in electrochemical devices and as a new media for application in modern technologies and chemical synthesis.  相似文献   

4.
Two air and water stable hydrophobic phosphonium ionic liquids (ILs), tributyl-hexylphosphonium tetrafluoroborate ([P4446][BF4]) and tributyl-hexylphosphonium bis (trifluoromethylsulfonyl) imide ([P4446][NTf2]), were prepared by the traditional method. Their basic physico-chemical properties of density, dynamic viscosity, and electrical conductivity were measured in the temperature range of 283.15-353.15 K. The effect of the temperature and structure of the anion on the thermodynamic properties were discussed. The properties are compared with the cation structures changing of the phosphonium type ILs. The most important thermodynamic properties for their practical application, such as molecular volume, standard molar entropy, and lattice energy, were calculated from their density using empirical equations. The calculated values were compared with those of imdazolium and pyridinium type ILs. Molar electrical conductivity was determined from density and electrical conductivity. The applicability of the Vogel-Fulcher-Tamman (VFT) and Arrhenius equations to the fitting of the dynamic viscosity and electrical conductivity was validated. The activation of the electrical conductivity and dynamic viscosity were obtained from the final VFT equation. According to the Walden rule, the density, dynamic viscosity, and electrical conductivity were described by the Walden equation. The results are very important for academic studies as well as industrial applications of these ILs.  相似文献   

5.
This review, covering reports published from 2001 to December 2008, shows how ionic liquids (ILs) have made significant contributions in the improvement of capillary and microchip electrophoresis (CE and μCE) for the separation and detection of analytes such as phenols and aromatic acids, metal ions, medicines, enantiomers, biological materials, etc. Furthermore, CE methods applied in the sensitive and accurate determination of physico-chemical properties of ILs have been summarized. Accordingly, research vacancies and future development trends in these areas are discussed.  相似文献   

6.
The tremendous potential of room temperature ionic liquids as an alternative to environmentally harmful ordinary organic solvents is well recognized. Due to their unique properties, such as low volatility, tunable viscosity and miscibility, and electrolytic conductivity, ionic liquids have attracted extensive attention and gained popularity in many areas of analytical chemistry including modern sample preparation techniques.  相似文献   

7.
Three kinds of ionic liquids, 1-alkyl-3-methylimidazolium tetrafluoroborate (n=2–4), were prepared and fundamental properties of ionic liquids and those mixed with industrially used organic solvents (PC, GBL and AN) were investigated compared to solid salts, TEMABF4. It was found that degree of ionization of the ionic liquids were almost same as that of TEMABF4 from the conductivity measurement in diluted system of PC. The ionic liquids and the organic solvents intermingle with each other. Some enhancement in conductivity was observed compared to TEMABF4.  相似文献   

8.
As a novel substituting solvent for organic solvents, low-temperature ionic liquids have attracted much attention as good media in organic synthesis and other chemical processes. Better understanding of physical properties of ionic liquids are very helpful in exploring reaction mechanisms and controlling reaction outputs. This review summarises current studies on several physical properties (melting point, vapor pressure and stability, polarity, miscibility, density, viscosity) that are important for organic reactions.  相似文献   

9.
提出了关于离子液体的新理论——离子交换跃迁模型,通过理论推导得出1:1型离子液体的Walden乘积仅取决于离子对和离子簇直径的统计平均值,即离子液体的阴阳离子结构不同,Walden乘积不同。为了验证模型的正确性,本文合成8种N-烷基-吡啶二氰胺类和N-烷基-咪唑丝氨酸类离子液体,利用上述离子液体的电导率和动力粘度的实验值及文献数据,计算了33种离子液体的Walden乘积。通过比较发现,不同离子液体的Walden乘积不同,即对于离子液体来说,Walden乘积是它的特征物理量。  相似文献   

10.
Determination of acid dissociation constants by capillary electrophoresis   总被引:2,自引:0,他引:2  
Capillary electrophoresis affords a simple, automated approach for the measurement of pKa values in the range 2-11 at a throughput of less than 1 h per sample per instrument. Agreement with literature values is usually within 0.20 log units with a precision better than 0.07 log units. The attractive features of capillary electrophoresis for pKa measurements are: (1) conventional instrumentation with a high level of automation are suitable for all measurements; (2) because it is a separation method samples need not be of high purity; (3) samples of low water solubility with suitable chromophores are easily handled (detection limits in the microM range); (4) sample consumption per measurement is in the microgram range; and (5) since only mobilities are measured, exact knowledge of concentrations is not needed. The general approach can be extended to pKa measurements in aqueous-organic solvent mixtures and non-aqueous solvents with suitable calibration. The widespread use of absorbance detection in capillary electrophoresis means that the sample must have a suitable chromophore for detection. The main source of controllable error is the accuracy of buffer standardization and their stability in use, and uncontrollable error, the retentive interactions of the sample with the column wall. The latter seems to be a rare problem in practice for typical operating conditions.  相似文献   

11.
Deep Eutectic Solvents (DES) can be formed between a variety of quaternary ammonium salts and carboxylic acids. The physical properties are significantly affected by the structure of the carboxylic acid but the phase behavior of the mixtures can be simply modeled by taking account of the mole fraction of carboxylic acid in the mixture. The physical properties such as viscosity, conductivity, and surface tension of these DES are similar to ambient temperature ionic liquids and insight into the cause of these properties is gained using hole-theory. It is shown that the conductivity and viscosity of these liquids is controlled by ion mobility and the availability of voids of suitable dimensions, and this is consistent with the fluidity of other ionic liquids and molten salts. The DES are also shown to be good solvents for metal oxides, which could have potential application for metal extraction.  相似文献   

12.
Ionic substances with melting points close to room temperature are referred to as ionic liquids. Because ionic liquids are environmentally benign and are good solvents for a wide range of both organic and inorganic materials, interest for their potential uses in different chemical processes is increasing. In this paper, a capillary electrophoretic method for the analysis of basic proteins including lysozyme, cytochrome c, trypsinoge, and α-chymotyypsinogen A is reported. The method, in which 1-alkyl-3-methylimidazolium-based ionic liquids are used as the running electrolytes, leads to a surface charge reversal on the capillary wall. The effects of the alkyl group, imidazolium counterion, and the concentration of the ionic liquids were discussed. The optimum buffer system was a 90 mM 1-ethyl-3-methylimidazolium tetrafluoroborate (1E-3MI-TFB) solution. The applied voltage was −15 kV and detection was performed by monitoring absorbance at 240 nm. Baseline separation, high efficiencies, and symmetrical peaks of four proteins were obtained. The R.S.D. values of migration times and peak areas were <0.68 and <3.0%, respectively. The separation mechanism seems to involve association between the imidazolium cations and the proteins.  相似文献   

13.
丁利  刘大壮  高振 《化学通报》2007,70(5):351-355
近年来人们对离子液体的兴趣不断增长。室温离子液体是一类熔点在室温附近的熔融盐,以其显著的特性在电化学、有机合成、催化、分离等领域被广泛应用。离子液体与氟化学紧密相关,离子液体中含有多种氟阴离子的烷基铵盐、咪唑盐等的合成、性质以及应用已经得到研究。离子液体的阴阳离子中氟原子数量和位置的不同,使离子液体具有不同的性质,如耐水性、耐温性、粘度、密度、表面张力、液体范围、导电性等。含氟的离子液体是离子液体的主要品种,它们凭借良好的可设计性和绿色环保的特点在当今化工工程的绿色化进程中显示出巨大的潜力和广阔的应用前景。  相似文献   

14.
《Electrophoresis》2017,38(3-4):533-539
In this study, an optimized method using capillary electrophoresis (CE) with a direct contactless conductivity detector (C4D) for a new application field is presented for the quantification of fluoride in common used lithium ion battery (LIB) electrolyte using LiPF6 in organic carbonate solvents and in ionic liquids (ILs) after contacted to Li metal. The method development for finding the right buffer and the suitable CE conditions for the quantification of fluoride was investigated. The results of the concentration of fluoride in different LIB electrolyte samples were compared to the results from the ion‐selective electrode (ISE). The relative standard deviations (RSDs) and recovery rates for fluoride were obtained with a very high accuracy in both methods. The results of the fluoride concentration in the LIB electrolytes were in very good agreement for both methods. In addition, the limit of detection (LOD) and limit of quantification (LOQ) values were determined for the CE method. The CE method has been applied also for the quantification of fluoride in ILs. In the fresh IL sample, the concentration of fluoride was under the LOD. Another sample of the IL mixed with Li metal has been investigated as well. It was possible to quantify the fluoride concentration in this sample.  相似文献   

15.
Physico-chemical properties of ionic liquids like density, viscosity, conductivity, surface tension and excess molar volume are strongly dependent on their concentration in aqueous solutions. 1-n-Butyl-3-methylimidazolium tetrafluoroborate/water solutions, at 25 °C, shows two clearly distinguished behaviors, corresponding to a water-rich and a salt-rich region, with distinct physico-chemical properties. It is shown that [BMIm][BF4] exhibits surfactant properties. The results obtained are discussed in terms of the interactions between cations and anions of the ionic liquid and the water molecule. IR studies show that the addition of water modifies the organization of the ionic liquid molecules. The data collection reported is helpful for a variety of different technological applications and in particular for electrochemical applications, as capacitors, batteries and fuel cells among others.  相似文献   

16.
A new type of ionic liquids containing cation of diacetone acrylamide [or N-(1,1-bismethyl-3-oxo-butyl)acrylamide]and anions such as CH3COO^-(Ac),CF3COO^-(TF),BF4^-(BF),PF6^-(PF),HSO4^-(SO) and Cl^-(Cl) were prepared by normal neutralization.The obtained ionic liquids were identified by FT-IR and ^1H NMR spectroscopy.However,their properties such as meliting point,conductivity,viscosity etc,were determined.  相似文献   

17.
室温离子液体是完全由离子构成的液体,具有几乎没有蒸汽压、溶解度大、溶解范围广、易于回收利用、稳定性好等特点,广泛应用于电化学、有机反应、分离萃取、复合材料等各个领域。近年来已成为各种聚合反应研究的重要课题,且主要集中于自由基聚合反应。作为聚合反应的溶剂,离子液体对聚合反应速率、分子量、聚合物的结构性能都有一定影响。本文根据近几年的文献,归纳分析了离子液体中的常规自由基聚合和活性自由基聚合的反应动力学、反应机理、聚合产物的结构和性能以及离子液体的回收利用等问题。  相似文献   

18.
Steady-state and time-resolved emission spectroscopy with 25 ps resolution are used to measure equilibrium and dynamic aspects of the solvation of coumarin 153 (C153) in a diverse collection of 21 room-temperature ionic liquids. The ionic liquids studied here include several phosphonium and imidazolium liquids previously reported as well as 12 new ionic liquids that incorporate two homologous series of ammonium and pyrrolidinium cations. Steady-state absorption and emission spectra are used to extract solvation free energies and reorganization energies associated with the S0 <--> S1 transition of C153. These quantities, especially the solvation free energy, vary relatively little in ionic liquids compared to conventional solvents. Some correlation is found between these quantities and the mean separation between ions (or molar volume). Time-resolved anisotropies are used to observe solute rotation. Rotation times measured in ionic liquids correlate with solvent viscosity in much the same way that they do in conventional polar solvents. No special frictional coupling between the C153 and the ionic liquid solvents is indicated by these times. But, in contrast to what is observed in most low-viscosity conventional solvents, rotational correlation functions in ionic liquids are nonexponential. Time-resolved Stokes shift measurements are used to characterize solvation dynamics. The solvation response functions in ionic liquids are also nonexponential and can be reasonably represented by stretched-exponential functions of time. The solvation times observed are correlated with the solvent viscosity, and the much slower solvation in ionic liquids compared to dipolar solvents can be attributed to their much larger viscosities. Solvation times of the majority of ionic liquids studied appear to follow a single correlation with solvent viscosity. Only liquids incorporating the largest phosphonium cation appear to follow a distinctly different correlation.  相似文献   

19.
In recent years, materials science has propelled to the research forefront. Ionic liquids with unique and fascinating properties have also left their footprints to the developments of materials science during the last years. In this review we highlight some of their recent advances and provide an overview at the current status of ionic liquid-modified materials applied in solid-phase extraction, liquid and gas chromatography and capillary electrochromatography with reference to recent applications. In addition, the potential of ionic liquids in the modification of capillary inner wall in capillary electrophoresis is demonstrated. The main target material modified with ionic liquids is silica, but polymers and monoliths have recently joined the studies. Although imidazolium is still clearly the most commonly used ionic liquid for the covalently modification of materials, the exploitation of pyridinium and phosphonium will most probably increase in the future.  相似文献   

20.
Ionic liquids in analytical chemistry   总被引:1,自引:0,他引:1  
Ionic liquids (ILs) are composed entirely of ions and they possess fascinating properties, including low volatility, tunable viscosity and miscibility, and electrolytic conductivity, which make ILs unique and useful for many applications in chemical analysis. The dramatic increase in the number of publications on ILs is indicative of the tremendous interest in this field from analytical chemists. This review summarizes recent efforts in the major subdisciplines of analytical chemistry, including extractions, gas chromatography, liquid chromatography, capillary electrophoresis, mass spectrometry, electrochemistry, sensors, and spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号