首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 157 nm photofragmentation of native and derivatized oligosaccharides was studied in a linear ion trap and in a home-built matrix-assisted laser desorption/ionization (MALDI) tandem time-of-flight (TOF/TOF) mass spectrometer, and the results were compared with collision-induced dissociation (CID) experiments. Photodissociation produces product ions corresponding to high-energy fragmentation pathways; for cation-derivatized oligosaccharides, it yields strong cross-ring fragment ions and provides better sequence coverage than low- and high-energy CID experiments. On the other hand, for native oligosaccharides, CID yielded somewhat better sequence coverage than photodissociation. The ion trap enables CID hybrid MS3 experiments on the high-energy fragment ions obtained from photodissociation.  相似文献   

2.
Postsource decay (PSD) spectra of isomeric neutral lactooligosaccharide mixtures were measured from the chlorinated molecules [M + Cl]- by negative-ion mode ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (UV-MALDI TOF MS) to estimate quantitatively the mixing ratios in their mixtures. The PSD ions specific to each isomeric structure were used to distinguish the linkage and branching isomers, and the molar ratios of the isomers were estimated from their ion abundances. The relative ion abundances changed linearly in the PSD spectra of the mixtures of the isomers as their molar ratio was varied in the analyte solutions. Therefore, the molar ratios of the isomers in the analyte mixtures could be estimated semiquantitatively. In addition, we studied their fragmentation mechanisms in N-acetyl hexosamines such as GlcNAc, which enabled us to quantitatively analyze the structures of the isomers of lactooligosaccharides. The conjugated systems elongate in the chemical species of the Z-type fragmentation on the 3-linked GlcNAc owing to the acetoamido groups at the C-2 positions, which made the chemical species of the Z-type ions stable. The glycosyl bonds of the front of GlcNAc cleaved easily as a C-type fragmentation because the negative charge at the anomeric position could be delocalized to the carbonyl oxygen atom at the acetoamido group of GlcNAc. These factors caused the stabilization of the chemical species of the C/Z fragment ions produced by the double cleavage around GlcNAc.  相似文献   

3.
An experimental comparison of product ion spectra produced by matrix-assisted laser desorption/ionization (MALDI) and electrospray ion-trap MS( n) for a group of small drug molecules is presented in this paper. The goal of the study was to demonstrate the usefulness of MALDI-MS with post-source decay (PSD) and collision-induced dissociation (CID) for the structural analysis of small drug molecules in the drug discovery process, where traditionally electrospray LC/MS methods are used. PSD and PSD/CID gave diverse product ions that were highly indicative of the structure of the drugs investigated (a group of 4-quinolone antibiotics and oleandomycin). In addition, the number of different product ions generated with MALDI-MS was always higher than with electrospray ion-trap MS( n) (with n < or =4) for the drug molecules studied. This investigation also showed that the choice of a suitable MALDI matrix for the analysis of low molecular weight compounds is quite important. It was found that of the three matrices examined, alpha-cyano-4-hydroxycinnamic acid (alpha-CHCA) produced the most intense fragmentation levels while TiO2, with its advantage of virtually no low mass background signals, did not generate quite the same amount of information.  相似文献   

4.
Positive- and negative-ion MSn spectra of chicken egg yolk glycopeptides binding a neutral and a sialylated N-glycan were acquired by using electrospray ionization linear ion trap time-of-flight mass spectrometry (ESI-LIT-TOFMS) and collision-induced dissociation (CID) with helium as collision gas. Several characteristic differences were observed between the positive- and negative-ion CID MSn (n = 2, 3) spectra. In the positive-ion MS2 spectra, the peptide moiety was presumably stable, but the neutral N-glycan moiety caused several B-type fragmentations and the sialylated N-glycan almost lost sialic acid(s). In contrast, in the negative-ion MS2 spectra, the peptide moiety caused several side-chain and N-glycan residue (e.g., N-acetylglucosamine (GlcNAc) residue) fragmentations in addition to backbone cleavages, but the N-glycan moieties were relatively stable. The positive-ion MS3 spectra derived from the protonated peptide ion containing a GlcNAc residue (203.1 Da) provided enough information to determine the peptide amino-acid sequence including the glycosylation site, while the negative-ion MS3 spectra derived from the deprotonated peptide containing a 0,2X1-type cross-ring cleavage (83.1 Da) complicated the peptide sequence analysis due to side-chain and 0,2X1 residue related fragmentations. However, for the structural information of the N-glycan moiety of the glycopeptides, the negative-ion CID MS3 spectra derived from the deprotonated 2,4A6-type cross-ring cleavage ion (neutral N-glycan) or the doubly deprotonated B6-type fragment ion (sialylated N-glycan) are more informative than are those of the corresponding positive-ion CID MS3 spectra. Thus, the positive-ion mode of CID is useful for the analyses of peptide amino-acid sequences including the glycosylation site. The negative-ion mode of CID is especially useful for sialylated N-glycan structural analysis. Therefore, in the structural analysis of N-glycopeptides, their roles are complementary.  相似文献   

5.
Post-source decay (PSD) fragmentation of chemically or enzymatically produced aminoglycans has been evaluated through matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Conversion of native glycans to their respective aminoglycan derivatives improved detection sensitivity of the usual fragments and promoted cross-ring fragmentation of linear oligosaccharides, facilitating linkage recognition. The cross-ring fragmentations for both dextrin and dextran oligosaccharides were not limited to the reducing-end glucose moiety, as they were extended throughout the entire molecule. When the amino group was generated for N-glycans derived from three different glycoproteins, an enhancement of PSD was observed, without a significant extent of cross-ring fragmentation.  相似文献   

6.
Comparative MS/MS studies of singly and doubly charged electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) precursor peptide ions are described. The spectra from these experiments have been evaluated with particular emphasis on the data quality for subsequent data processing and protein/amino acid sequence identification. It is shown that, once peptide ions are formed by ESI or MALDI, their charge state, as well as the collision energy, is the main parameter determining the quality of collision-induced dissociation (CID) MS/MS fragmentation spectra of a given peptide. CID-MS/MS spectra of singly charged peptides obtained on a hybrid quadrupole orthogonal time-of-flight mass spectrometer resemble very closely spectra obtained by matrix-assisted laser desorption/ionization post-source decay time-of-flight mass spectrometry (MALDI-PSD-TOFMS). On the other hand, comparison of CID-MS/MS spectra of either singly or doubly charged ion species shows no dependence on whether ions have been formed by ESI or MALDI. This observation confirms that, at the time of precursor ion selection, further mass analysis is effectively decoupled from the desorption/ionization event. Since MALDI ions are predominantly formed as singly charged species and ESI ions as doubly charged, the associated difference in the spectral quality of MS/MS spectra as described here imposes direct consequences on data processing, database searching using ion fragmentation data, and de novo sequencing when ionization techniques are changed.  相似文献   

7.
Fragmentation studies using both an ion-trap mass analyzer and a hybrid quadrupole time-of-flight (Q-TOF) mass spectrometer were performed in order to establish the fragmentation pathways of organic molecules. A general strategy combining MSn data (n = 1-4) in an ion-trap analyzer with tandem mass spectrometry and in-source collision-induced dissociation tandem mass spectrometry (CID MS/MS) in a Q-TOF instrument was applied. The MSn data were used to propose a tentative fragmentation pathway following genealogical relationships. When several assignments were possible, MS/MS and in-source CID MS/MS (Q-TOF) allowed the elemental compositions of the fragments to be confirmed. Quaternary ammonium herbicides (quats) were used as test compounds and their fragmentation pathways were established. The elemental composition of the fragments was confirmed using the TOF analyzer with relative errors <0.0023 Da. Some fragments previously reported in the literature were reassigned taking advantage of the high mass resolution and accuracy of the Q-TOF instrument, which made it possible to solve losses where nitrogen was involved.  相似文献   

8.
Various feruloylated arabinose- and galactose-containing mono- and disaccharides with known linkage configurations (2-O-(trans-feruloyl)-L-arabinopyranose, 5-O-(trans-feruloyl)-L-arabinofuranose, O-[2-O-(trans-feruloyl)-alpha-L-arabinofuranosyl]-(1-->5)-L-arabinofuranose, and O-[6-O-(trans-feruloyl)-beta-D-galactopyranosyl]-(1-->4)-D-galactopyranose) were analyzed by electrospray ionization mass spectrometry using an ion trap or a quadrupole time-of-flight (Q-TOF) mass analyzer. Collision-induced dissociation (CID) experiments using the two mass analyzers generated similar tandem mass spectrometric (MS/MS) fragmentation patterns. However, the ester-bond cleavage ions were more abundant using the Q-TOF mass analyzer. Compared with the positive ion mode, the negative ion mode produces simpler and more useful CID product-ion patterns. For arabinose-containing feruloylated compounds, results obtained with both analyzers show that it is possible to assign the location of the feruloyl group to the O-2 or O-5 of arabinosyl residues. In the characterization of the 2-O-feruloyl and 5-O-feruloyl linkages, the relative abundance of the cross-ring fragment ions at m/z 265 (-60 u or -62 u after 18O-labelling) and at m/z 217 (-108 u or -110 u after 18O-labelling) play a relevant role. For galactose-containing feruloylated compounds, losses of 60, 90 and 120 Da observed in MS3 experiment correspond to the production of 0,2A1, 0,3A1 and (0,2A1-60 Da) cross-ring cleavage ions, respectively, fixing the location of feruloyl group at the O-6 of the galactose residue.  相似文献   

9.
Recently, a useful procedure for the preparation of both even- and odd-numbered series of N-acetylheparosan (NAH) oligosaccharides was established. The present report describes findings when these NAH oligosaccharides were subjected to comparative mass spectrometry (MS)/MS fragmentation analysis by matrix-assisted laser desorption/ionization (MALDI)-LIFT-time-of-flight (TOF)/TOF-MS/MS, and electrospray ionization (ESI) collision-induced dissociation (CID) MS/MS. The resultant fragment ions were systematically assigned to elucidate fragmentation characteristics. In the MALDI-LIFT-MS/MS experiments, all the NAH oligosaccharides underwent unique glycosidic cleavages that included B-Y ion cleavages (nomenclature system of Domon and Costello, Glycoconjugate J. 1988; 5: 397) at the C-1 side, and C-Z ion cleavages at the C-4 side, with respect to glucuronic acid (GlcA). In addition, (0,2)A and/or (0,2)X cross-ring cleavages were observed for relatively small oligosaccharides. The former observation clearly reflects the occurrence of a GlcA-N-acetylglucosamine (GlcNAc) alternating structure of NAH, while the latter feature implies the occurrence of the -beta-1-4-glucuronide linkage. Extensive glycosidic cleavages were also observed in the ESI-CID-MS/MS fragmentation, though cleavage specificity was less evident than in the case of MALDI-LIFT-TOF/TOF-MS/MS. The information obtained in this study should be valuable for understanding both biosynthetic and degradation processes of NAH and its derivatives including heparin and heparan sulfate, as well as artificially modified NAH oligosaccharides.  相似文献   

10.
The capability to rapidly and confidently determine or confirm the sequences of short oligonucleotides, including native and chemically-modified DNA and RNA, is important for a number of fields. While matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) has been used previously to sequence short oligonucleotides, the typically low fragmentation efficiency of in-source or post-source decay processes necessitates the accumulation of a large number of spectra, thus limiting the throughput of these methods. Here we introduce a novel matrix, 1,5-diaminonapthalene (DAN), for facile in-source decay (ISD) of DNA and RNA molecular anions, which allows for rapid sequence confirmation. d-, w-, and y-series ions are prominent in the spectra, complementary to the (a-B)- and w- ions that are typically produced by MALDI post-source decay (PSD). Results are shown for several model DNA and RNA oligonucleotides, including combinations of DAN-induced fragmentation with true tandem TOF MS (MS/MS) for pseudo-MS3 and “activated-ion PSD.”  相似文献   

11.
Collision-induced dissociation (CID) mass spectra were generated for azaspiracids using electrospray ionisation (ESI), and hydrogen/deuterium (H/D) exchange was used to ascertain the number and type of replaceable hydrogens in the three predominant azaspiracid toxins. H/D exchange was conveniently achieved using deuterated solvents for liquid chromatography (LC). Using ion-trap mass spectrometry, multiple-stage CID experiments (MS(n)) on the protonated and fully exchanged ions were performed to decipher characteristic fragmentation pathways. The precursor and product ions from azaspiracids lost up to five water molecules from different regions during MS(n) experiments and it was possible to distinguish between the water losses from different molecular regions. These studies confirmed that the first water-loss ion in the spectra of azaspiracids resulted from dehydration at the vicinal diol at C20-C21. Five MS dissociation pathways were identified that resulted from fragmentation of the carbon skeleton of azaspiracids producing nitrogen-containing ions. Two pathways, involving cleavage of the E-ring and C27-C28, gave ions that were found in all azaspiracids. Three pathways, A-ring, C-ring and C19-C20 cleavages, were useful for distinguishing between azaspiracid analogues. The same product ions from backbone fragmentation were also observed using hybrid quadrupole time-of-flight mass spectrometry (QqTOFMS). The fragmentation of the A-ring was the most facile and was exploited in the development of LC/MS(n) methods for the analysis of azaspiracids.  相似文献   

12.
We present a detailed, collaborative study on the fragmentation of deprotonated native d-ribose and d-fructose and the isotopically labelled 1-13C-d-ribose, 5-13C-d-ribose and C-1-d-d-ribose. The fragmentation is studied in a matrix assisted laser desorption/ionization time of flight mass spectrometer (MALDI ToF MS), both in in-source decay (ISD) and post-source decay (PSD) mode and compared with fragmentation through dissociative electron attachment (DEA). Fragmentation of deprotonated monosaccharides formed in the MALDI process, as well as their transient molecular anions formed upon electron attachment are characterized by loss of different numbers of H2O and CH2O units. Two different fragmentation pathways leading to cross-ring cleavage are identified. Metastable decay of deprotonated d-ribose proceeds either via an X-type cleavage yielding fragment anions at m/z = 119, 100 and 89, or via an A-type cleavage resulting in m/z = 89, 77 and 71. A fast and early metastable cross-ring cleavage of deprotonated d-ribose observed in in-source decay is dominated by X-type cleavage leading mainly to m/z = 100 and 71. For dissociative electron attachment to d-ribose a sequential dissociation was identified that includes metastable decay of the dehydrogenated molecular anion leading to m/z = 89. All other fragmentation reactions in DEA to d-ribose are likely to proceed directly and on a faster timescale (below 400 ns).  相似文献   

13.
In this study, we have developed a tandem time-of-flight mass spectrometry (TOF/TOF) technique involving the use of a matrix-assisted laser desorption/ionization ion source that exhibits high precursor ion selectivity. An ion optical system with a 17 m spiral ion trajectory was used in the first time-of-flight mass spectrometer. High precursor ion selectivity was achieved by realizing a 15 m flight path, which is considerably longer than that of the conventional MALDI-TOF/TOF before the precursor ion selection by an ion gate; monoisotopic ions could be selected properly up to m/z 2500. Furthermore, the first time-of-flight mass spectrometer was composed of electrostatic sectors and could eliminate post-source decay (PSD) ions. Precursor ions with 20 keV kinetic energy were selected and injected into a collision cell, leading to the generation of fragment ions by high-energy collision-induced dissociation (HE-CID). The optimized second time-of-flight mass spectrometer included a post-acceleration region and an offset parabolic reflectron to record product ion spectra in the entire mass range. Our system could generate a simple HE-CID product ion spectrum because each fragment pathway could be observed as a single peak by the selection of monoisotopic ions of all precursor ions and HE-CID fragment pathways could be predominantly observed by the PSD ion elimination.  相似文献   

14.
Structural analyses of various glycans attached to proteins and peptides are highly desirable for elucidating their biological roles. An approach based on mass spectrometry (MS) combining both collision-induced dissociation (CID) and electron-capture dissociation (ECD) in the positive- and negative-ion modes has been proposed as a simple and direct method of assigning an O-glycan without releasing it from the peptide and of determining the amino acid sequence of the peptide and glycosylation site. The instrument used is an electrospray ionization (ESI) linear ion trap (LIT) time-of-flight (TOF) mass spectrometer with tandem LITs for CID by He gas and ECD. The proposed approach was tested with two synthetic O-glycopeptides binding a sialyl Lewis x (sLe(x)) oligosaccharide and a 3'-sialyl N-acetyllactosamine (3'-SLN) on a serine (S) residue. In the negative-ion mode, the CID MS(2) spectra of O-glycopeptides showed a relatively abundant glycoside-bond cleavage between the core N-acetylglucosamine (GlcNAc) and serine (S) that yields deprotonated C(3)-type fragment ions of O-glycan and deprotonated Z(0)-type peptide ions. The structure of the sLe(x) (3'-SLN) oligosaccharide was simply assigned by comparing the CID MS(3) spectrum derived from the C(3)-type fragment ion with the CID MS(2) spectra of the sLe(x) and sLe(a) (3'- and 6'-SLN) standards (i.e., negative-ion MS(n) spectral matching). The amino acid sequence of the peptide including the glycosylation site was determined from the ECD MS(2) spectrum in the positive-ion mode.  相似文献   

15.
In this report, the mass spectral analysis of azaspiracid biotoxins is described. Specifically, the collision-induced dissociation (CID) behavior and differences between CID spectra obtained on a triple-quadrupole, a quadrupole time-of-flight, and an ion-trap mass spectrometer are addressed here. The CID spectra obtained on the triple-quadrupole mass spectrometer allowed the classification of the major product ions of the five investigated compounds (AZA 1-5) into five distinct fragment ion groups, according to the backbone cleavage positions. Although the identification of unknown azaspiracids was difficult based on CID alone, the spectra provided sufficient structural information to allow confirmation of known azaspiracids in marine samples. Furthermore, we were able to detect two new azaspiracid analogs (AZA 1b and 6) in our samples and provide a preliminary structural analysis. The proposed dissociation pathways under tandem mass spectrometry (MS/MS) conditions were confirmed by a comparison with accurate mass data from electrospray quadrupole time-of-flight MS/MS experiments. Regular sequential MS(n) analysis on an ion-trap mass spectrometer was more restricted in comparison to the triple-quadrupole mass spectrometer, because the azaspiracids underwent multiple [M + H - nH(2)O](+) (n = 1-6) losses from the precursor ion under CID. Thus, the structural information obtained from MS(n) experiments was somewhat limited. To overcome this limitation, we developed a wide-range excitation technique using a 180-u window that provided results comparable to the triple-quadrupole instrument. To demonstrate the potential of the method, we applied it to the analysis of degraded azaspiracids from mussel tissue extracts.  相似文献   

16.
Weak signal intensity and poor precursor ion selection are the major difficulties in tandem time-of-flight (TOF) mass spectrometry of ions generated by matrix-assisted laser desorption/ionization (MALDI). Even though the latter can be overcome in photodissociation (PD) tandem TOF mass spectrometry via ion pulse-PD laser pulse synchronization, clean monoisotopic selection of precursor ions of high m/z can often be difficult for various reasons. A considerable enhancement of post-source decay (PSD) and PD tandem mass spectra has been achieved in this work via single-ion detection and post-acquisition reduction of the spectra. Also, an algorithm has been developed to clean up isotopomeric contamination when the resolution for precursor ion selection is less than adequate. A high-quality tandem TOF mass spectrum which results from PD of virtually monoisotopic precursor ions has been obtained.  相似文献   

17.
We present a novel enhancement to matrix-assisted laser desorption ionization (MALDI) post-source decay (PSD) analysis whereby fragment ions from multiple precursor ions are acquired into the same spectrum without employing a timed ion gate to preselect each parent ion. Fragment ions are matched to their corresponding precursor ions by comparing spectra acquired at slightly different reflectron electric fields. By measuring the difference in time-of-flight (TOF) between the two spectra for each fragment, it is possible to calculate the mass of the fragment ion and its parent. This new "parallel PSD" technique reduces analysis time and consumes less sample than conventional PSD, which requires an ion gate for serial preselection of precursor ions.  相似文献   

18.
Commercial copper wire and its polymer insulation cladding was investigated for the presence of three synthetic antioxidants (ADK STAB AO412S, Irganox 1010 and Irganox MD 1024) by three different mass spectrometric techniques including electrospray ionization–ion trap–mass spectrometry (ESI–IT–MS), matrix‐assisted laser desorption/ionization reflectron time‐of‐flight (TOF) mass spectrometry (MALDI–RTOF–MS) and reflectron TOF secondary ion mass spectrometry (RTOF–SIMS). The samples were analyzed either directly without any treatment (RTOF–SIMS) or after a simple liquid/liquid extraction step (ESI–IT–MS, MALDI–RTOF–MS and RTOF–SIMS). Direct analysis of the copper wire itself or of the insulation cladding by RTOF–SIMS allowed the detection of at least two of the three antioxidants but at rather low sensitivity as molecular radical cations and with fairly strong fragmentation (due to the highly energetic ion beam of the primary ion gun). ESI–IT‐ and MALDI–RTOF–MS‐generated abundant protonated and/or cationized molecules (ammoniated or sodiated) from the liquid/liquid extract. Only ESI–IT–MS allowed simultaneous detection of all three analytes in the extract of insulation claddings. The latter two so‐called ‘soft’ desorption/ionization techniques exhibited intense fragmentation only by applying low‐energy collision‐induced dissociation (CID) tandem MS on a multistage ion trap‐instrument and high‐energy CID on a tandem TOF‐instrument (TOF/RTOF), respectively. Strong differences in the fragmentation behavior of the three analytes could be observed between the different CID spectra obtained from either the IT‐instrument (collision energy in the very low eV range) or the TOF/RTOF‐instrument (collision energy 20 keV), but both delivered important structural information. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
For structural identification of glycans, the classic collision-induced dissociation (CID) spectra are dominated by product ions that derived from glycosidic cleavages, which provide only sequence information. The peaks from cross-ring fragmentation are often absent or have very low abundances in such spectra. Electron transfer dissociation (ETD) is being applied to structural identification of carbohydrates for the first time, and results in some new and detailed information for glycan structural studies. A series of linear milk sugars was analyzed by a variety of fragmentation techniques such as MS/MS by CID and ETD, and MS(3) by sequential CID/CID, CID/ETD, and ETD/CID. In CID spectra, the detected peaks were mainly generated via glycosidic cleavages. By comparison, ETD generated various types of abundant cross-ring cleavage ions. These complementary cross-ring cleavages clarified the different linkage types and branching patterns of the representative milk sugar samples. The utilization of different MS(3) techniques made it possible to verify initial assignments and to detect the presence of multiple components in isobaric peaks. Fragment ion structures and pathways could be proposed to facilitate the interpretation of carbohydrate ETD spectra, and the main mechanisms were investigated. ETD should contribute substantially to confident structural analysis of a wide variety of oligosaccharides.  相似文献   

20.
The term reactive oxygen species refers to small molecules that can oxidize, for example, nearby proteins, especially cysteine, methionine, tryptophan, and tyrosine residues. Tryptophan oxidation is always irreversible in the cell and can yield several oxidation products, such as 5-hydroxy-tryptophan (5-HTP), oxindolylalanine (Oia), kynurenine (Kyn), and N-formyl-kynurenine (NFK). Because of the severe effects that oxidized tryptophan residues can have on proteins, there is a great need to develop generally applicable and highly sensitive techniques to identify the oxidized residue and the oxidation product. Here, the fragmentation behavior of synthetic peptides corresponding to sequences recently identified in three skeletal muscle proteins as containing oxidized tryptophan residues were studied using postsource decay and collision-induced dissociation (CID) in matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF)/TOF mass spectrometry (MS) and CID in an electrospray ionization (ESI) double quadrupole TOF-MS. For each sequence, a panel of five different peptides containing Trp, 5-HTP, Kyn, NFK, or Oia residue was studied. It was always possible to identify the modified positions by the y-series and also to distinguish the different oxidation products by characteristic fragment ions in the lower mass range by tandem MS. NFK- and Kyn-containing peptides displayed an intense signal at m/z 174.1, which could be useful in identifying accordingly modified peptides by a sensitive precursor ion scan. Most importantly, it was always possible to distinguish isomeric 5-HTP and Oia residues. In ESI- and MALDI-MS/MS, this was achieved by the signal intensity ratios of two signals obtained at m/z 130.1 and 146.1. In addition, high collision energy CID in the MALDI-TOF/TOF-MS also permitted the identification of these two isomeric residues by their v- and w-ions, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号