首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics and mechanisms of the reactions of cyanomidyl radical (HNCN) with oxygen atoms and molecules have been investigated by ab initio calculations with rate constant prediction. The doublet and quartet state potential energy surfaces (PESs) of the two reactions have been calculated by single-point calculations at the CCSD(T)/6-311+G(3df, 2p) level based on geometries optimized at the CCSD/6-311++G(d, p) level. The rate constants for various product channels of the two reactions in the temperature range of 300-3000 K are predicted by variational transition state and RRKM theories. The predicted total rate constants of the O(3P) + HNCN reaction at 760 Torr Ar pressure can be represented by the expressions ktotal (O + HNCN) = 3.12 × 10−10 × T−0.05 exp (−37/T) cm3 molecule−1 s−1 at T = 300-3000 K. The branching ratios of primary channels of the O(3P) + HNCN are predicted: k1 for producing the NO + CNH accounts for 0.72-0.64, k2 + k9 for producing the 3NH + NCO accounts for 0.27-0.32, and k6 for producing the CN + HNO accounts for 0.01-0.07 in the temperature range studied. Meanwhile, the predicted total rate constants of the O2 + HNCN reaction at 760 Torr Ar pressure can be represented by the expression, ktotal(O2 + HNCN) = 2.10 × 10−16 × T1.28exp (−12200/T) cm3 molecule−1 s−1 at T = 300-3000 K. The predicted branching ratio for k11 + k13 producing HO2 + 3NCN as the primary products accounts for 0.98-1.00 in the temperature range studied.  相似文献   

2.
Laminar flame speeds were accurately measured for CO/H2/air and CO/H2/O2/helium mixtures at different equivalence ratios and mixing ratios by the constant-pressure spherical flame technique for pressures up to 40 atmospheres. A kinetic mechanism based on recently published reaction rate constants is presented to model these measured laminar flame speeds as well as a limited set of other experimental data. The reaction rate constant of CO + HO2 → CO2 + OH was determined to be k = 1.15 × 105T2.278 exp(−17.55 kcal/RT) cm3 mol−1 s−1 at 300-2500 K by ab initio calculations. The kinetic model accurately predicts our measured flame speeds and the non-premixed counterflow ignition temperatures determined in our previous study, as well as homogeneous system data from literature, such as concentration profiles from flow reactor and ignition delay time from shock tube experiments.  相似文献   

3.
Kinetics and mechanisms for reactions of OH with methanol and ethanol have been investigated at the CCSD(T)/6-311 + G(3df2p)//MP2/6-311 + G(3df2p) level of theory. The total and individual rate constants, and product branching ratios for the reactions have been computed in the temperature range 200-3000 K with variational transition state theory by including the effects of multiple reflections above the wells of their pre-reaction complexes, quantum-mechanical tunneling and hindered internal rotations. The predicted results can be represented by the expressions k1 = 4.65 × 10−20 × T2.68 exp(414/T) and k2 = 9.11 × 10−20 × T2.58 exp(748/T) cm3 molecule−1 s−1 for the CH3OH and C2H5OH reactions, respectively. These results are in reasonable agreements with available experimental data except that of OH + C2H5OH in the high temperature range. The former reaction produces 96-89% of the H2O + CH2OH products, whereas the latter process produces 98-70% of H2O + CH3CHOH and 2-21% of the H2O + CH2CH2OH products in the temperature range computed (200-3000 K).  相似文献   

4.
The two-channel thermal decomposition of toluene, C6H5CH3 → C6H5CH2 + H (1) and C6H5CH3 → C6H5 + CH3 (2), was investigated in shock tube experiments over the temperature range of 1400-1780 K at a pressure of 1.5 (±0.1) bar. Rate coefficients for reactions (1) and (2) were determined by monitoring benzyl radical (C6H5CH2) absorption at 266 nm during the decomposition of toluene diluted in argon and modeling the temporal behavior of the benzyl concentration with a kinetic model. The first-order rate coefficients determined at a pressure of 1.5 bar are expressed by k1(T) = 2.09 × 1015 exp (−87510 [cal/mol]/RT) [s−1] and k2(T) = 2.66 × 1016 exp (−97880 [cal/mol]/RT) [s−1]. The resulting branching ratio, k1/(k1 + k2), ranges from 0.8 at 1350 K to 0.6 at 1800 K.  相似文献   

5.
The high-temperature photochemistry (HTP) technique, previously used for reactions of neutral species, has been adapted to the study of atomic metal ion-molecule reactions. Ca+ ions were generated by 193 nm multi-photon photolysis of calcium acetyl acetonate and its pyrolysis fragments. The relative ion concentrations were monitored by laser-induced fluorescence at 393.4 nm. Ar was used as the bath gas. The data for the Ca+ + O2 + M → CaO2+ + M association reaction (1) are fitted by k1(907-1425 K) = 3.5 × 10−32 exp(+3161 K/T) cm6 molecule−2 s−1. Combining with an approximate k1(296 K) value in the literature leads to k1(296-1425 K) = 5.8 × 10−22 (T/K)−2.9 exp(−601 K/T) cm6 molecule−2 s−1. Over much of the observed temperature range reaction (1) has much smaller rate coefficients than the corresponding neutral Ca association reaction. Reaction (1) is shown to behave very similarly to the O2 association reaction with neutral K atoms, with which Ca+ is iso-electronic. This suggests that the initial step is ion-pair complex formation of the superoxide Ca2+(O2), which is also consistent with results from density functional calculations. The k1 values are rationalized via Troe’s unimolecular formalism, which leads to good accord with the experiments.  相似文献   

6.
This work investigates the origin of novel visible photoluminescence (PL) bands observed in the spinel MgAl2O4:Co2+. Besides the well-known fourfold-coordinated Co2+(Td) PL at 670 nm [N.V. Kuleshov, V.P. Mikhailov, V.G. Scherbitsky, P.V. Prokoshin and K.V. Yumashev, J. Lumin. 55 (1993) 265.], a rich structured PL band at 686 nm was also observed that we associate with uncontrolled impurities of sixfold coordinated Cr3+(Oh) by time-resolved spectroscopy and lifetime measurements and their variation with temperature. We also show that the lifetime of the Co2+(Td) emission at 670 nm varies from τ=6.7 μs to 780 ns on passing from T=10 to 290 K. This unexpected behaviour for Td systems is related to the excited-state crossover (4T12E), making the emission band to transform from a narrow-like emission from 2E at low temperature to a broad structureless band from 4T1 at room temperature.  相似文献   

7.
Benzyl is a resonantly stabilized radical that commonly occurs as an intermediate in the combustion of aromatic compounds. The bimolecular reaction of benzyl with HO2 is important in the oxidation of toluene, especially at low to moderate temperatures, where unimolecular decomposition of the benzyl radical is slow. We show that the addition of HO2 to the methylene site in benzyl produces a vibrationally excited benzylhydroperoxide adduct, with over 60 kcal mol−1 (251 kJ mol−1) of excess energy above the ground state. RRKM simulations are performed on the benzyl + HO2 reaction, using thermochemical and kinetic parameters obtained from ab initio calculations, with variational transition state theory (VTST) for treatment of barrierless radical + radical reaction kinetics. Our results reveal that the benzyl + HO2 reaction proceeds predominantly to the benzoxyl radical + OH at temperatures of around 800 K and above, with the production of stabilized benzylhydroperoxide molecules dominating at lower temperatures. The heat of formation of the benzyl radical is calculated as 52.5 kcal mol−1 (219.7 kJ mol−1) at the G3B3 level of theory, in relative agreement with other recent determinations of this value.  相似文献   

8.
A high-resolution (0.002 cm−1) infrared absorption spectrum of methylene fluoride-d2 (CD2F2) of the lowest fundamental mode ν4 in the region from 460 to 610 cm−1 has been measured on a Bruker IFS 120-HR Fourier transform infrared spectrometer. More than 3500 transitions have been assigned in this B-type band centered at 521.9 cm−1. The data have been combined with upper state pure rotational measurements in a weighted least-squares fit to obtain molecular constants for the upper state resulting in an overall standard deviation of 0.00018 cm−1. Accurate value for the band origin (521.9578036 cm−1) has been obtained and inclusion of transitions with very high J (?60) and Ka (?34) values has resulted in improved precision for sextic centrifugal distortion constants, in particular DK, HKJ, and HK.  相似文献   

9.
10.
(Na0.85K0.15)0.5Bi0.5TiO3 thin films were deposited on LaNiO3(LNO)/SiO2/Si(1 0 0) and Pt/Ti/SiO2/Si(1 0 0) substrates by metal-organic decomposition, and the effects of bottom electrodes LNO and Pt on the ferroelectric, dielectric and piezoelectric properties were investigated by ferroelectric tester, impedance analyzer and scanning probe microscopy, respectively. For the thin films deposited on LNO and Pt electrodes, the remnant polarization 2Pr are about 22.6 and 8.8 μC/cm2 under 375 kV/cm, the dielectric constants 238 and 579 at 10 kHz, the dielectric losses 0.06 and 0.30 at 10 kHz, the statistic d33eff values 95 and 81 pm/V. The improved piezoelectric properties could make (Na1−xKx)0.5Bi0.5TiO3 thin film as a promising candidate for piezoelectric thin film devices.  相似文献   

11.
The [TMA]2Zn0.5Cu0.5Cl4 hybrid material was prepared and its dielectric spectra were measured in the 10−1 Hz-106 Hz frequency range and 200-305 K temperature interval. The dielectric permittivity showed a ferroelectric-paraelectric phase transition at 293 K. Double relaxation peaks are observed in the imaginary part of the electrical modulus, suggesting the presence of grain and grain boundary in the sample. The frequency dependent conductivity was interpreted in term of Jonscher's law: σ(ω)=σdc+n. The temperature dependent of the dc conductivity (σdc) was well described by the Arrhenius equation: σdcT=σo×exp(−Ea/kT).  相似文献   

12.
The quenching behavior of the triplets of C60 by various aniline derivatives (1a-d and 2a-e) was investigated by means of laser flash photolysis in benzonitrile at 293 K. Electron transfer process was proposed to be the main mechanism because of the direct detection of radical ions of aniline derivatives and C60 in time-resolved transient absorption spectra. The quenching rate constants (kq) of by different substrates determined at 740 nm approach or reach the diffusion-controlled limit. DFT method was employed to calculate the unknown oxidation potentials of substrates in solution. With these Eox values, free energy changes (ΔG) were obtained through Rehm-Weller equation. Dependence of observed quenching rate constants on the free energy changes further indicates the photoinduced reactions between 3C60* and substrates proceed through an electron transfer mechanism. Obtained kq values for the aniline derivatives are impacted obviously by ground-state configurations and the kinds substituents quantified by Hammett σ constant. Good correlation between log kq and σ values conforms to the empirical Hammett equation. A more negative ρ value (−3.356) was gained for anilines (2a-e) than that of N,N-dimethylanilines (1a-d) (−1.382), which suggests a more susceptible reactivity for the former substrates. Charge density distribution of reaction center “N” originated from quantum calculation supports this suggestion. In addition, a relationship between quenching rate constants and solvent viscosity was gained from C60/dimethyl-p-toluidine system in altered mixtures of acetonitrile and toluene.  相似文献   

13.
Titanium dioxide (TiO2) nanoparticles (NPs) are widely used as an important kind of biomaterials. The interaction between TiO2 (P25) at 20 nm in diameter and human serum albumin (HSA) was studied by fluorescence spectroscopy in this work. Under the simulative physiological conditions, fluorescence data revealed the presence of a single class of binding site on HSA and its binding constants (Ka) were 2.18±0.04×104, 0.87±0.05×104, 0.68±0.06×104 M−1 at 298, 304 and 310 K, respectively. In addition, according to the Van’t Hoff equation, the thermodynamic functions standard enthalpy (ΔH0) and standard entropy (ΔS0) for the reaction were calculated to be −75.18±0.15 kJ mol−1 and −170.11±0.38 J mol−1 K−1. These results indicated that TiO2 NPs bond to HSA mainly by van der Waals force and hydrogen bonding formation in low dielectric media, and the electrostatic interactions cannot be excluded. Furthermore, the effects of common ions on the binding constant of TiO2 NPs-HSA complex were discussed.  相似文献   

14.
Density functional theory (DFT) combined with conductor-like solvent model (COSMO) have been performed to study the solvent effects of H2 adsorption on Cu(h k l) surface. The result shows H2 can not be parallel adsorbed on Cu(h k l) surface in gas phase and only vertical adsorbed. At this moment, the binding energies are small and H2 orientation with respect to Cu(h k l) surfaces is not a determining parameter. In liquid paraffin, when H2 adsorbs vertically on Cu(h k l) surface, solvent effects not only influences the adsorptive stability, but also improves the ability of H2 activation; When H2 vertical adsorption on Cu(h k l) surface at 1/4 and 1/2 coverage, H-H bond is broken by solvent effects. However, no stable structures at 3/4 and 1 ML coverage are found, indicating that it is impossible to get H2 parallel adsorption on Cu(h k l) surfaces at 3/4 and 1 ML coverages due to the repulsion between adsorbed H2 molecules.  相似文献   

15.
The hyperfine interaction experienced by 181Ta nuclei in the intermetallic compounds ZrNi5, HfNi5, and Hf2Ni7 has been investigated by perturbed angular correlation (PAC) spectroscopy. At temperatures T≥15 K the 181Ta angular correlation of appropriately annealed ZrNi5 and HfNi5 is unperturbed, indicating the absence of a magnetic hyperfine interaction. This observation rules out the possibility of spontaneous magnetic order of ZrNi5 and HfNi5 recently proposed in the literature. The temperature dependence of the electric quadrupole interaction of 181Ta in Hf2Ni7 suggests the existence of a reversible phase transformation at T≥500 K.  相似文献   

16.
The possibility that the reaction between two cyclopentadienyl radicals (cC5H5) may lead to the production of naphthalene has been the subject of considerable theoretical and experimental studies. Though it has been proposed that this reaction may be the main channel for the formation of naphthalene in many combustion environments, the elementary mechanism leading from the initial adduct (C5H5_C5H5) to naphthalene is still not clear. In this study the portion of the C10H10 PES accessible to C5H5_C5H5 has been theoretically re-examined using density functional theory to locate stationary points and the CBS-QB3 computational protocol to determine energies. A new reaction pathway leading to the formation of a set of azulyl radicals was identified. Since it is known that azulyl radicals can easily decompose to naphthalene and atomic H, the proposed pathway provides an effective route for the formation of naphthalene. Channel specific kinetic constants were determined between 1100 K and 2000 K integrating the master equation for a PES comprising both this reaction pathway and the literature reaction pathway, which main product is the fulvalenyl radical. It was found that the main reaction channel is decomposition to reactants in the whole temperature range investigated and that the azulyl reaction channel is dominant over the fulvalenyl pathway up to 1450 K. The rate constants calculated at 1 bar for the azulyl and fulvalenyl reaction channels are 1014.72T(K)?0.853 exp(?3650/T(K)) and 1010.30T(K)0.951 exp(?7948/T(K)) cm3/mol/s, respectively. The rate constant for the formation of naphthalene through the azulyl channel is consistent with recent estimates based on the kinetic simulation of the pyrolysis and oxidation of cyclopentadiene.  相似文献   

17.
The kinetics for the reactions of C6H5 with phenylacetylene and styrene have been measured by CRDS in the temperature range 297-409 K under an Ar pressure of 3.6 Torr. The total rate constants can be given by the following Arrhenius expressions (in units of cm3 mol−1 s−1): k1(C6H5 + C6H5C2H) = 1013.0±0.1exp [−(2430 ± 150)/RT] and k2(C6H5 + C6H5C2H3) = 1013.3±0.1 exp [−(2570 ± 180)/T]. Additional DFT and MP2 calculations have been carried out to assist our interpretation of the measured kinetic data. The addition of C6H5 to the terminal CHx (x = 1 or 2) sites is predicted to be the dominant channel for both reactions. The calculated bimolecular rate constants are in reasonable agreement with experimental values for the temperature range studied.  相似文献   

18.
Bulk InxSe1−x (with x=5-25 at%) glasses were prepared using the melt-quench technique. Short range order(SRO) was examined by the X-ray diffraction using Cu(kα) radiation in the wave vector interval 0.28≤k≤6.5 A0−1.The SRO parameters have been obtained from the radial distribution function. The inter-atomic distance obtained from the first and second peak are r1=0.263 and r2=0.460 nm, which is equivalent In-Se and Se-Se bond length. The fundamental structural unit for the studied glasses is In2Se3 pyramid. Using the differential scanning calorimetry (DSC), the crystallization mechanism of InxSe1−x chalcogenide glass has been studied. The glass transition activation energy (Eg) is 289±0.3 kj/mol.There is a correlation amongst the glass forming ability, bond strength and the number of lone pair electrons. The utility of the Gibbs-Di Marzio relation was achieved by estimating Tg theoretically.  相似文献   

19.
We report the iron isotope effect on a transition temperature (Tc) in an optimally-doped (Ba,K)Fe2As2 (Tc = 38 K) and SmFeAsO1−y (Tc = 54 K) superconductors. In order to obtain the reliable isotope shift in Tc, twin samples with different iron isotope mass are synthesized in the same conditions (simultaneously) under high-pressure. We have found that (Ba,K)Fe2As2 shows an inverse iron isotope effect αFe = −0.18 ± 0.03 while SmFeAsO1−y shows a small iron isotope effect αFe = −0.02 ± 0.01, where the isotope exponent α is defined by Tc  Mα (M is the isotopic mass). The results show that αFe changes in the iron-based superconductors depending on the system. The distinct iron isotope effects imply the exotic coupling mechanism in the iron-based superconductors.  相似文献   

20.
The spectrum of the ν7 band of cis-ethylene-d2 (cis-C2H2D2) has been recorded with an unapodized resolution of 0.0063 cm−1 in the 740-950 cm−1 region using a Bruker IFS 125 HR Fourier transform infrared spectrometer. By fitting 2186 infrared transitions of ν7 with a standard deviation of 0.00060 cm−1 using a Watson’s A-reduced Hamiltonian in the Ir representation, accurate rovibrational constants for ν7 = 1 state have been derived. The band center of ν7 has been found to be 842.20957 ± 0.00004 cm−1. In a simultaneous fit of 1331 infrared ground state combination differences from the present ν7 transitions, together with 22 microwave frequencies, ground state constants have been improved. The rms deviation of the ground state fit was 0.00027 cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号