首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a comprehensive neutron scattering study on the spin excitations in the magnetic Weyl semimetal Co3Sn2S2 with a quasi-two-dimensional structure.Both in-plane and out-of-plane dispersions of the spin waves were revealed in the ferromagnetic state.Similarly,dispersive but damped spin excitations were found in the paramagnetic state.The effective exchange interactions were estimated using a semi-classical Heisenberg model to consistently reproduce the experimental TCand spin stiffness.However,a full spin wave gap below Eg=2.3 meV was observed at T=4 K.This value was considerably larger than the estimated magnetic anisotropy energy(~0.6 meV),and its temperature dependence indicated a significant contribution from the Weyl fermions.These results suggest that Co3Sn2S2 is a three-dimensional correlated system with a large spin stiffness,and the low-energy spin dynamics can interplay with the topological electron states.  相似文献   

2.
We calculate the electronic band dispersion of graphene monolayer on a two-dimensional transition metal dichalcogenide substrate (GrTMD) around K and \(\mathbf{K}^{\prime }\) points by taking into account the interplay of the ferromagnetic impurities and the substrate-induced interactions. The latter are (strongly enhanced) intrinsic spin–orbit interaction (SOI), the extrinsic Rashba spin–orbit interaction (RSOI) and the one related to the transfer of the electronic charge from graphene to substrate. We introduce exchange field (M) in the Hamiltonian to take into account the deposition of magnetic impurities on the graphene surface. The cavalcade of the perturbations yield particle–hole symmetric band dispersion with an effective Zeeman field due to the interplay of the substrate-induced interactions with RSOI as the prime player. Our graphical analysis with extremely low-lying states strongly suggests the following: The GrTMDs, such as graphene on \(\hbox {WY}_{2}\), exhibit (direct) band-gap narrowing / widening (Moss–Burstein (MB) gap shift) including the increase in spin polarisation (P) at low temperature due to the increase in the exchange field (M) at the Dirac points. The polarisation is found to be electric field tunable as well. Finally, there is anticrossing of non-parabolic bands with opposite spins, the gap closing with same spins, etc. around the Dirac points. A direct electric field control of magnetism at the nanoscale is needed here. The magnetic multiferroics, like \(\hbox {BiFeO}_{3}\) (BFO), are useful for this purpose due to the coupling between the magnetic and electric order parameters.  相似文献   

3.
We report inelastic neutron scattering studies of magnetic excitations in antiferromagnetically ordered SrFe2As2 (T_{N}=200-220 K), the parent compound of the FeAs-based superconductors. At low temperatures (T=7 K), the magnetic spectrum S(Q,Planck's omega) consists of a Bragg peak at the elastic position (Planck's omega=0 meV), a spin gap (Delta< or =6.5 meV), and sharp spin-wave excitations at higher energies. Based on the observed dispersion relation, we estimate the effective magnetic exchange coupling using a Heisenberg model. On warming across T_{N}, the low-temperature spin gap rapidly closes, with weak critical scattering and spin-spin correlations in the paramagnetic state. The antiferromagnetic order in SrFe2As2 is therefore consistent with a first order phase transition, similar to the structural lattice distortion.  相似文献   

4.
We use high-resolution inelastic neutron scattering to study the low-temperature magnetic excitations of the electron-doping superconductor Pr(0.88)LaCe(0.12)CuO(4-delta) (T(c) = 21 +/- 1 K) over a wide energy range (4 meV < or = homega < or = 330 meV). The effect of electron doping is to cause a wave vector (Q) broadening in the low-energy (homega < or = 80 meV) commensurate spin fluctuations at (0.5, 0.5) and to suppress the intensity of spin-wave-like excitations at high energies (homega > or = 100 meV). This leads to a substantial redistribution in the spectrum of the local dynamical spin susceptibility chi'(omega), and reveals a new energy scale similar to that of the lightly hole-doped YB2Cu3O(6.353) (T(c) = 18 K).  相似文献   

5.
We study the Ruderman–Kittle–Kasuya–Yosida (RKKY) interaction in doped armchair graphene nanoribbon. The effects of both external magnetic field and electron-Holstein phonon on RKKY interaction have been addressed. RKKY interaction as a function of distance between localized moments has been analyzed. It has been shown that a magnetic field along the z-axis mediates an anisotropic interaction which corresponds to a XXZ model interaction between two magnetic moments. In order to calculate the exchange interaction along arbitrary direction between two magnetic moments, we should obtain both transverse and longitudinal static spin susceptibilities of armchair graphene nanoribbon in the presence of electron-phonon coupling and magnetic field. The spin susceptibility components are calculated using the spin dependent Green’s function approach for Holstein model Hamiltonian. The effects of spin polarization on the dependence of exchange interaction on distance between moments are investigated via calculating correlation function of spin density operators. Our results show the influences of magnetic field on the spatial behavior of in-plane and longitudinal RKKY interactions are different in the presence of magnetic field.  相似文献   

6.
Indirect exchange interaction between two magnetic external atoms, named by Ruderman–Kittle–Kasuya–Yosida (RKKY) interaction, has been presented in the staggered armchair graphene nanoribbon. We have studied RKKY interaction as a function of distance between localized moments. It has been shown that a magnetic ordering along the z-axis mediates an anisotropic interaction which corresponds to a XXZ model interaction between two magnetic moments. The static spin susceptibility components of armchair graphene nanoribbon have been calculated to find exchange interaction between arbitrary components of magnetic moments. We have exploited Green’s function approach in order to calculate spin susceptibility components of electronic gas in nanoribbon structure in the context of tight binding model Hamiltonian. The effects of parameter and ribbon width on the dependence of exchange interaction on distance between moments are investigated. Our results show the spin polarization along perpendicular to the plane leads to anisotropic behavior for exchange interaction between the two magnetic moments. In other words the spatial behavior of RKKY interaction between longitudinal components of magnetic moments is different from that of transverse components.  相似文献   

7.
We have investigated the spin dynamics in the strongly correlated chain copper oxide SrCuO2 for energies up to greater, similar 0.6 eV using inelastic neutron scattering. We observe a gapless continuum of magnetic excitations, which is well described by the "Müller ansatz" for the two-spinon continuum in the S=1/2 antiferromagnetic Heisenberg spin chain. The lower boundary of the continuum extends up to approximately 360 meV, which corresponds to an exchange constant J=226(12) meV.  相似文献   

8.
The Monte Carlo method has been applied to reproduce the two-step spin transition in [FexZn1?x(2-pic)3]Cl2 · EtOH (2-pic = 2-picolylamine). The partition function of the Hamiltonian has been factorized in two parts describing the inner degrees of freedom of the spin transition molecules and the interaction between them. The factorization is equivalent to an effective Hamiltonian which can be mapped on an Ising system in an applied magnetic field. The interaction consists of an infinite range and a short range interaction part. Qualitatively the two-step transition under pressure and the Zn diluted system have been well reproduced with infinite range and the next nearest neighbour interaction of ferromagnetic type and the nearest neighbour interaction of antiferromagnetic type in a simple cubic lattice.  相似文献   

9.
The magnetic state of a system of particles with a “large” spin of 3/2 in the presence of isotropic exchange interaction in the system has been studied on the basis of a derived spin Hamiltonian. It has been shown that, at a positive contribution of the exchange interaction, an unstable nematic state appears and transforms to a stable ferromagnetic state (with an average spin of 3/2). The excitation spectrum in the ferromagnetic state is a triply degenerate Goldstone-type gapless magnon mode. At a negative sign of the exchange contribution, an antinematic state is stable with respect to a transition to a ferromagnetic state, which is forbidden. In this case, the antinematic always occurs in the state of a phase transition to an unstable antiferromagnetic state, the excitation spectrum of which is characterized by a single nondegenerate Goldstone mode.  相似文献   

10.
We report bulk magnetization, and elastic and inelastic neutron scattering measurements under an external magnetic field H on the weakly coupled distorted kagome system, Cu2(OD)3Cl. Our results show that the ordered state below 6.7 K is a canted antiferromagnet and consists of large antiferromagnetic ac components and smaller ferromagnetic b components. By first-principles calculations and linear spin wave analysis, we present a simple spin Hamiltonian with nonuniform nearest neighbor exchange interactions resulting in a system of coupled spin trimers with a single-ion anisotropy that can qualitatively reproduce the spin dynamics of Cu2(OD)3Cl.  相似文献   

11.
We have performed inelastic neutron scattering on the near ideal spin-ladder compound La4Sr10Cu24O41 as a starting point for investigating doped ladders and their tendency toward superconductivity. A key feature was the separation of one-triplon and two-triplon scattering. Two-triplon scattering is observed quantitatively for the first time and so access is realized to the important strong magnetic quantum fluctuations. The spin gap is found to be 26.4+/-0.3 meV. The data are successfully modeled using the continuous unitary transformation method, and the exchange constants are determined by fitting to be Jleg=186 meV and Jrung=124 meV along the leg and rung, respectively; a substantial cyclic exchange of Jcyc=31 meV is confirmed.  相似文献   

12.
The influence of magnetic (S=1) and nonmagnetic (S=0) impurities on the spin dynamics of an optimally doped high temperature superconductor is compared in YBa2(Cu0.97Ni0.03)3O7 (Tc=80 K) and YBa2(Cu0.99Zn0.01)3O7 (Tc=78 K). In the Ni-substituted system, the magnetic resonance peak (which is observed at Er approximately 40 meV in the pure system) shifts to lower energy with a preserved Er/Tc ratio while the shift is much smaller upon Zn substitution. By contrast Zn, but not Ni, restores significant spin fluctuations around 40 meV in the normal state. These observations are discussed in the light of models proposed for the magnetic resonance peak.  相似文献   

13.
李小影  黄灿  朱岩  李晋斌  樊济宇  潘燕飞  施大宁  马春兰 《物理学报》2018,67(13):137101-137101
根据密度泛函理论的第一性原理计算了具有非中心反演对称的异质结δ-(Zn,Cr)S(111)体系的原子结构和电子结构.Cr原子之间通过第一层S原子传递磁性相互作用.结合广义布洛赫条件,又进一步计算了反方向的自旋螺旋能量与波矢的色散关系E(q)与E(-q).E(q)与E(-q)能量之差反映了δ-(Zn,Cr)S(111)的S层与Cr层之间空间反演对称性破缺引起的DMI的大小.通过海森伯相互作用(HBI)模型与Dzyaloshinsky-Moriya作用(DMI)模型拟合第一性原理计算值,得到了Cr原子间各近邻的HBI参数J_1-J_4与DMI参数d-_1,d_2.在δ-(Zn,Cr)S(111)中,Cr原子间的耦合为M型反铁磁.DMI参数d_1为-0.53 meV,为顺时针手性DMI,在δ-(Zn,Cr)S(111)界面上有可能会产生斯格明子.本文计算表明,磁性和非磁性半导体界面有可能存在DMI,为理论研究和磁存储技术的进步开拓一个新的方向.  相似文献   

14.
A detailed inelastic neutron scattering study of the high temperature superconductor YBa2Cu3O6.85 provides evidence of new resonant magnetic features, in addition to the well-known resonant mode at 41 meV: (i) a commensurate magnetic resonance peak at 53 meV with an even symmetry under exchange of two adjacent CuO2 layers, and (ii) high-energy incommensurate resonant spin excitations whose spectral weight is around 54 meV. The locus and the spectral weight of these modes provides unrevealed insight about the momentum shape of the electron-hole spin-flip continuum of d-wave superconductors.  相似文献   

15.
Inelastic cold-neutron scattering on LaCoO3 provided evidence for a distinct low energy excitation at 0.6 meV coincident with the thermally induced magnetic transition. Coexisting strong ferromagnetic (FM) and weaker antiferromagnetic correlations that are dynamic follow the activation to the excited state, identified as the intermediate S = 1 spin triplet. This is indicative of dynamical orbital ordering favoring the observed magnetic interactions. With hole doping as in La(1-x)Sr(x)CoO3 , the FM correlations between Co spins become static and isotropically distributed due to the formation of FM droplets. The correlation length and condensation temperature of these droplets increase rapidly with metallicity due to the double exchange mechanism.  相似文献   

16.
Low-energy spin excitations of La(1.85)Sr(0.15)Cu(1-y)Zn(y)O4 were studied by neutron scattering. In y=0.004, the incommensurate magnetic peaks show a well-defined "spin gap" below T(c). The magnetic signals at omega=3 meV decrease below T(c)=27 K for y=0.008, also suggesting the gap opening. At lower temperatures, however, the signal increases again, implying a novel in-gap spin state. In y=0.017, the spin gap vanishes and elastic magnetic peaks appear. These results clarify that doped Zn impurities induce the novel in-gap state, which becomes larger and more static with increasing Zn.  相似文献   

17.
使用显微拉曼散射技术研究不同的La掺杂浓度对BiFeO3(Bi1-xLaxFeO3,x=0,0.1,0.2,0.3,0.6,0.8和1.0)的结构性质的影响。拉曼光谱的变化证明了在Bi1-xLaxFeO3中,随着La含量的增加,其结构从三方相变成正交相。引人注目的是,位于610 cm-1附近的拉曼峰和它的二阶峰依然存在,并且随着La掺杂量的增加发生明显的增强。这一现象与BiFeO3在三方相结构存在的螺旋自旋结构被破坏有关。我们的实验证实了在Bi1-xLaxFeO3材料中存在着强烈的自旋-声子相互作用,这对于理解Bi1-xLaxFeO3材料的结构与物性之间的关系提供有用的信息。  相似文献   

18.
在室温、77K条件下,对·4DMF(1)簇合物的固态和溶液样品进行了EPR谱的测定,获得三套谱图(Ⅰ、Ⅱ、Ⅲ),其分别归属于簇合物中未配对电子的两种形式:(1)类似于自由的单铜离子的未配对电了(Ⅰ、Ⅱ两套谱).(2)双铜未配对电子偶合成的三重态(Ⅲ套谱). 文中用双铜的三重态自旋哈密顿HS=βHgS+DSz2+E(Sx2-Sy2)-(2)/3D公式计算三重态EPR谱的参数. 题目化合物(1)与双铜簇合物·4DMF(2)相比较,在配体结构上稍有不同(前者,甲苯胺中的甲基是连接于苯环的间位;而后者,甲基是连接于苯环的对位),由此引起一些磁性参数:有效磁矩μeff、磁交换相互作用参数J、相对的电子自旋浓度ρ和EPR谱的超精细结构(h.f.s)参数都有所不同.  相似文献   

19.
A neutron scattering study of the Mott-Hubbard insulator LaTiO3 ( T(N) = 132 K) reveals a spin wave spectrum that is well described by a nearest-neighbor superexchange constant J = 15.5 meV and a small Dzyaloshinskii-Moriya interaction ( D = 1.1 meV). The nearly isotropic spin wave spectrum is surprising in view of the absence of a static Jahn-Teller distortion that could quench the orbital angular momentum, and it may indicate strong orbital fluctuations. A resonant x-ray scattering study has uncovered no evidence of orbital order in LaTiO3.  相似文献   

20.
A new Hamiltonian for the interaction of magnetic impurity spin with the conduction electrons is proposed. It is found that the conduction electrons may be condensed into the spin levels. For single impurity, the exact eigenstates are found. In the case of many impurities, virtual electron exchange is predicted for the first time. A single fermion and a single phonon operator interaction leads to hybrid interaction between bands of electrons along with some interesting effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号