首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了交联壳聚糖(CCTS)对银(Ⅰ)的吸附性能,提出了用CCTS作为富集剂预富集分离水样中痕量银的新方法。研究结果表明:在pH 3.0时,CCTS对银的吸附率达99%以上,其饱和吸附量为0.6 mg/g;采用8 mL 0.5 moL/L的氨水可将吸附在CCTS上的银定量洗脱。用CCTS将水中痕量银(Ⅰ)富集20倍,石墨炉原子吸收光谱法(GFAAS)进行检测,检出限(3σ,n=6)为0.406μg/L,相对标准偏差(RSD)小于6.8%。该方法也适合贵金属银的回收利用。  相似文献   

2.
采用室温固相法合成球形立方相纳米CeO2,建立了纳米CeO2富集分离,ICP-M S同时测定痕量Pb(Ⅱ)和Cd(Ⅱ)的方法。在pH 7.0,10 mg CeO2,吸附15min后,纳米CeO2对Pb(Ⅱ),Cd(Ⅱ)的吸附率均可达100%;以2mL 0.05 mol/L HCl溶液为洗脱剂、洗脱20 min后,对Pb(Ⅱ)和Cd(Ⅱ)的洗脱率可分别达到98%和95%以上;纳米CeO2对Pb(Ⅱ),Cd(Ⅱ)的最大静态吸附容量分别为496.9μg/g和243.1μg/g,富集倍数均可达250倍,共存离子影响小。优化ICP-MS仪器工作条件,选择205Bi和115In为在线内标进行Pb(Ⅱ)和Cd(Ⅱ)的测定,检出限分别为1.7 pg/mL和9.2 pg/mL,RSD分别为4.8%和0.94%。方法应用于实际水样,回收率分别为Pb(Ⅱ)93.6%~106.4%,Cd(Ⅱ)96.2%~108.9%。  相似文献   

3.
肖艳  周方钦  彭佳  廖运霞 《分析测试学报》2015,34(11):1281-1285
该文制备了一种新型吸附材料三乙烯四胺修饰β-环糊精交联树脂(TETA-β-CDP),并对其进行红外光谱表征,优化了该吸附材料对痕量铅、镉的吸附和解析条件,建立了动态条件下同时分离富集/原子吸收光谱测定大米中铅和镉的新方法。在p H 5.5时,样品溶液以1.0 m L/min流速过柱,试液中的Pb2+和Cd2+可被该树脂定量富集,其动态饱和吸附容量分别为22.8,31.3 mg/g,吸附在TETA-β-CDP上的Pb2+和Cd2+可用0.1 mol/L HCl以0.8 m L/min流速完全洗脱。该方法对铅、镉的检出限(3σ,n=11)分别为0.038 mg/L和0.016 mg/L;线性范围分别为0.2~20 mg/L和0.05~2.5 mg/L;相对标准偏差(RSD)分别为2.8%和1.7%;加标回收率分别为97.5%~101.0%和95.0%~102.5%。该方法用于大米样品中痕量铅、镉的测定,结果满意。  相似文献   

4.
以戊二醛、环氧氯丙烷为交联剂,用三乙烯四胺改性,由壳聚糖合成了一种新型的三乙烯四胺修饰交联壳聚糖微球(CRN)分离树脂,研究了不同条件下CRN对Cd2+的吸附性能。在pH6.0时,CRN能定量吸附溶液中的痕量Cd2+,其静态饱和吸附容量为31.0 mg/g。吸附在CRN上的Cd2+可用0.5 mol/L的H2SO4洗脱,用火焰原子吸收法测定洗脱液中Cd2+的含量。本法对Cd2+的检出限(3σ)为24.6 ng/mL,相对标准偏差(RSD)为2.1%(n=11,c=1.0μg/mL),加标回收率在97.3%~104.0%。该方法可用于矿渣中痕量镉的测定。  相似文献   

5.
研究了用海带吸附法分离富集水中痕量Pb2 和Cd2 的方法.在25℃下,pH4.0~5.0,水样经过预先用海带制成吸附柱后,用10mL 1 mol/L的HCl,流速为1 mL/min对吸附柱进行洗脱,采用原子吸收光谱法测定洗脱液中Pb2 和Cd2 .Pb2 和Cd2 的饱和吸附量分别为164.67和8.73 mg/g,回收率在95.8%~103.1%之间.  相似文献   

6.
采用火焰原子吸收光谱法(FAAS)研究了交联聚丙烯腈螯合树脂对环境样品中Pb2+的吸附分离/富集行为,并考察了共存离子的干扰。 结果表明,该树脂对Pb2+的吸附率在溶液pH=5.4、静态吸附时间为1.5 h时室温下可达到90%。 在最佳吸附条件下,树脂对单一Pb2+的饱和吸附容量可达到49.6 mg/g。 以0.1 mol/L盐酸溶液作为解吸剂,可将吸附在树脂上的Pb2+定量洗脱,富集倍数和解吸率可分别达到50和97%。 富集50倍后,方法的检出限(3σ10)为5.3 μg/L;相对标准偏差(RSD)为2.1%;加标回收率为92.9%~97.6%。  相似文献   

7.
交联壳聚糖在痕量金预富集、分离中的应用研究   总被引:6,自引:0,他引:6  
研究了交联壳聚糖(CCTS)对于金的吸附性能,提出了用CCTS作为富集剂,预富集、分离水样中痕量Au(Ⅲ)的新方法。研究结果表明:在pH为4.0,吸附25min的条件下,CCTS对金的吸附率达99.0%;采用2.5%(W/V)的硫脲溶液可将吸附在CCTS上的金定量洗脱。将CCTS用于水中痕量金的预富集,富集倍数达20倍;用火焰原子吸收光谱法(FAAS)检测,检出限(3δ,n=6)为0.088mg,/L;相对标准偏差(RSD)小于5.9%;回收率在92%~102%之间。所提出的预富集方法具有简便、快速、选择性好等特点。  相似文献   

8.
建立了离子印迹壳聚糖/凹凸棒石(IICA)分离富集-火焰原子吸收光谱(FAAS)测定中药材中痕量Cd(Ⅱ)的新方法。在动态吸附条件下,系统研究了溶液pH值、流速、洗脱条件和干扰离子对痕量Cd(Ⅱ)分离富集的影响。研究表明,在pH为4.5,上样流速为0.60mL/min条件下,Cd(Ⅱ)能被IICA定量富集;吸附的Cd(Ⅱ)可用1.0mol/L HCl-0.1mol/L甲基异丁酮的乙醇溶液,在流速为0.96mL/min条件下完全洗脱。优化条件下,IICA对Cd(Ⅱ)的动态吸附容量为56.45mg/g。线性范围为0.00097~1.28mg/L,r=0.9994,检出限(3σ,n=11)为0.97μg/L,相对标准偏差为1.32%(n=6,c=0.08mg/L),回收率在96.5%~106.4%之间。该方法操作简便,灵敏度和精密度高,可应用于实际中药材样品中痕量镉的测定。  相似文献   

9.
交联壳聚糖在痕量钨(Ⅵ)分析中的应用   总被引:7,自引:0,他引:7  
提出了用交联壳聚糖(CCTS)预富集、分光光度法测定痕量钨的新方法。研究了CCTS对钨(Ⅵ)的吸附行为,结果表明:在pH=4.5的条件下,交联壳聚糖对钨(Ⅵ)的吸附率最大,可达96%。考察了吸附时间、吸附剂用量、样品体积以及共存元素对吸附率的影响,探讨了吸附机理。方法的检出限(3σ)为0.65μg/L,相对标准偏差(RSD)小于0.75%(n=6),富集倍数为20倍。用于温泉水和海水中痕量钨的测定,结果满意。  相似文献   

10.
均苯四甲酸酐修饰壳聚糖微球对Pb2+和Cd2+的吸附   总被引:2,自引:0,他引:2  
用交联的壳聚糖微球(CTS)与均苯四甲酸酐在无水条件下反应,合成了均苯四甲酸酐修饰壳聚糖微球. 用FT-IR和XPS表征了产物的结构,考察了它对水溶液中Pb2+和Cd2+的吸附行为及其影响因素. 结果表明,吸附等温线符合Langmuir方程. 当pH=5.0时,对Pb2+和Cd2+的最大吸附量分别为296.7和149.9 mg/g. 用二级吸附动力学模拟动力学过程有很好的线性相关性,据此确定为化学吸附过程. 以0.2 mol/L的EDTA为解吸剂,Pb2+和Cd2+的再生率分别为92.4%和85.3%.  相似文献   

11.
建立了中孔分子筛Al-MCM-41分离富集-火焰原子吸收光谱法测定水样中痕量铅的新方法。采用扫描电镜(SEM)、红外光谱(IR)等检测方法对自制的中孔分子筛Al-MCM-41吸附材料进行了表征,优化了中孔分子筛Al-MCM-41对试液中痕量铅的吸附和解吸条件。在pH5.5时,室温振荡20 min,中孔分子筛Al-MCM-41能定量、快速吸附水中的痕量Pb2+,其静态饱和吸附容量为2.5 mg/g。吸附在中孔分子筛Al-MCM-41上的Pb2+可用0.2 mol/L EDTA完全洗脱。其他金属离子共存不影响铅的测定。洗脱铅后的吸附材料经再生可循环使用10次以上。Pb2+的线性范围为0.5~30 mg/L,富集后方法检出限(3σ)为0.05μg/L,对5 mg/L的Pb2+溶液平行测定11次,相对标准偏差为1.2%,加标回收率为98%~104%。该方法用于环境水样中铅的测定,结果满意。  相似文献   

12.
以壳聚糖为原料,通过交联和黄原酸化反应制备出交联黄原酸壳聚糖,采用FT-IR和XRD表征了其结构,并探讨壳聚糖及交联黄原酸壳聚糖对Pb2+的吸附性能。研究了初始溶液pH值、温度以及吸附时间等因素对Pb2+吸附量的影响。结果表明,在Pb2+起始浓度0.01 M,起始溶液pH=5,室温25℃吸附2h条件下,壳聚糖和交联黄原酸壳聚糖对铅离子的吸附量分别为126.8 mg/g和238.9 mg/g,交联黄原酸壳聚糖吸附能力为壳聚糖的1.89倍。  相似文献   

13.
报道了用冠醚壳聚糖多孔微球选择性富集绒柄牛肝菌中痕量铅并用石墨炉原子吸收法测定.DB-18-crown-6-CTS多孔微球在pH5.5时,对Pb2+的富集率达到98%.吸附的Pb2+能用5 mL 2 mol/L的HCl定量洗脱,洗脱率98.1%.Pb2+被洗脱后,用石墨炉原子吸收法测定.该方法的富集倍数为100倍,检出限(3σ)为0.085μg/L,相对标准偏差小于2.8%,用于分析绒柄牛肝菌样品,回收率为94.5%~102%.  相似文献   

14.
为实现金纳米粒子(AuNPs)对环境水体中重金属离子的选择性吸附,以刻饰不锈钢丝为基体,采用化学沉积法在刻蚀不锈钢丝表面沉积AuNPs,再用自组装法将1,8-辛二硫醇修饰于AuNPs上,制备了一种以巯基功能化金纳米为吸附剂的金属搅拌棒(AuNPs-SH-SBSE)。采用电感耦合等离子发射光谱仪(ICPOES)为检测手段,以常见的金属离子Pb(Ⅱ)和Cd(Ⅱ)为例,评价了金属搅拌棒的萃取分离性能。考察了吸附时间、pH值、解吸溶剂等因素对Pb(Ⅱ)和Cd(Ⅱ)吸附率的影响。结果表明,当吸附平衡时间为30min、pH 8.0,6.0 mL 1.5 mol/L HNO_3作洗脱剂时,Pb(Ⅱ)和Cd(Ⅱ)的吸附率分别达98.5%和87.4%。将该方法用于实际样品中痕量Pb(Ⅱ)和Cd(Ⅱ)的吸附检测,其线性范围分别为0.1~50 mg/L和0.2~20 mg/L,方法的检出限(S/N=3)分别为24 ng/L和3.6μg/L。在低、高2个浓度水平下进行加标回收实验,回收率分别为85.4%~105.0%和74.2%~97.8%,相对标准偏差(RSD,n=3)分别为3.8%~8.2%和4.2%~10.6%。该方法简单、快速、灵敏,可应用于环境水体中Pb(Ⅱ)和Cd(Ⅱ)的分离检测。  相似文献   

15.
研究了介孔Ti O2分离富集材料的制备及其对Cd(Ⅱ)的吸附性能,考察了影响吸附和解吸的主要因素。pH=6.0时,介孔Ti O2能定量吸附溶液中的痕量Cd(Ⅱ),其静态饱和吸附容量为57.8 mg/g。吸附在介孔Ti O2上的Cd(Ⅱ)可用1 mol/L HCl洗脱,洗脱液中的Cd(Ⅱ)用火焰原子吸收法测定。本法对Cd(Ⅱ)的检出限(3σ)为23.3 ng/mL,相对标准偏差(RSD)为2.0%(n=7,c=1.0μg/mL),回收率在94.0%~102.5%之间。该方法用于矿样中痕量Cd(Ⅱ)的测定,结果满意。  相似文献   

16.
用交联的壳聚糖微球(CTS)与氯乙酸在碱性条件下反应,合成了羧甲基壳聚糖树脂(CMCT)。其吸附染料活性艳红X-3B的实验结果表明,CMCT和CTS均对偶氮染料活性艳红X-3B有较好的去除能力。实验条件下,最大平衡吸附量分别为611.5mg/g和365.2mg/g,说明羧甲基的引入提高了壳聚糖的吸附能力。等温吸附可以用Langmuir方程较好的描述,表明为单分子层吸附。动力学过程用二级吸附动力学模拟具有很好的线性相关性,通过二级吸附模型计算出的平衡吸附量与实验值相符。流动床实验表明,CMCT和CTS对浓度为100mg/L的X-3B溶液吸附的穿透点分别为6000ml/g和3375ml/g,用0.1mol/L的氢氧化钠溶液洗脱,洗脱峰集中,洗脱率都在90%以上。洗脱再生后的CMCT和CTS树脂均可重复使用。  相似文献   

17.
以2-巯基苯骈噻唑为修饰剂,铅离子为印迹离子成功制备分子印迹功能介孔材料,并用扫描电镜(SEM)、傅里叶红外光谱对材料进行了结构表征。铅离子分子印迹功能介孔材料能很好地将Pb(II)与性质相近的二价重金属离子Cu(II),Cd(II)和Hg(II)分离,具有非常好的吸附选择性,且静态吸附容量0.64 mmol/g。利用该材料制备的分离富集柱可以很好地富集溶液中痕量铅离子,且仅用2 mL 0.5 mol/L EDTA以0.4 mL/min流速即可完全洗脱,富集倍数高达250倍。样品预富集后的火焰原子吸收光度法线性范围为0.5~1.2×104μg/L,r=0.999 2,检出限(3σ,n=11)为0.04μg/L。利用功能介孔材料分离富集水样中痕量铅离子,用火焰原子吸收法测定含量,相对标准偏差(RSD)小于等于3%(n=6),回收率在98.2%~99.1%之间。  相似文献   

18.
提出了纳米硅羟基磷灰石(Si-HAP)分离富集,火焰原子吸收光谱法(FAAS)测定水样中痕量铅的新方法。考察了铅在纳米Si-HAP上的吸附动力学、最佳酸度和吸附容量。实验结果表明:在最佳实验条件下,纳米Si-HAP能定量、快速地吸附水中的痕量Pb2+,其静态吸附容量24.33 mg/g;吸附在纳米Si-HAP上的Pb2+可用0.01mol/L EDTA-Ca完全洗脱。本法对Pb2+的检出限为1.33 ng/mL,相对标准偏差为4.0%(n=11,c=1μg/mL),加标回收率在94.9%~102.0%之间。方法用于实际水样中铅的测定,结果满意。  相似文献   

19.
以氧化石墨烯和Fe_3O_4磁性纳米颗粒为原料制备出新型分离富集材料磁性氧化石墨烯纳米颗粒,建立了与原子荧光光谱仪联用检测水样中Pb(II)和Cd(II)的方法。通过红外光谱进行表征,并探究影响材料吸附性能的因素,例如溶液的p H、吸附剂用量、洗脱剂浓度与体积、吸附与洗脱时间、样品体积与干扰离子等。在已优化的实验条件下,Pb(Ⅱ)和Cd(Ⅱ)的检出限(LOD)分别为4.1×10-5,2.7×10-5mg/L,线性范围分别是1.0×10-4~1.4×10-2mg/L,5.0×10~(-5)~5.0×10~(-3)mg/L;相对标准偏差(RSD)分别为2.3%,3.5%;加标回收率分别为91.8%~101.0%,93.3%~102.0%。方法适用于水样中铅离子和镉离子的定量分析。  相似文献   

20.
通过浸渍法制备了新型纳米氧化石墨烯/麦饭石(GO/MFS)复合吸附材料,并用于镉的分离富集。以火焰原子吸收法为检测手段,研究了GO/MFS复合吸附材料对水中Cd(Ⅱ)的吸附性能。结果表明:当pH为9.0时,GO/MFS复合吸附材料用量为20mg,振荡10min,Cd(Ⅱ)可被吸附材料定量富集,最大吸附容量为111.1mg/g。吸附等温线均能符合Langmuir和Freundlich等温线模型,说明该吸附体系是一个单层覆盖与多层吸附相结合的模式。被吸附的Cd(Ⅱ)可用0.15mol/L HNO3定量洗脱。方法测定Cd(Ⅱ)的线性范围为0.04~2.0mg/L,检出限为9.6μg/L;对40μg/LCd(Ⅱ)测定的相对标准偏差(RSD)为2.5%(n=9)。该方法具有操作简单、分析时间短、线性范围宽等优点。用该法对自来水中Cd(Ⅱ)进行加标测定,回收率101%~103%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号