首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
刘渊  贾瑛  李茸 《无机化学学报》2020,36(2):210-216
以Fe(CO)5为前驱体,通过金属有机化学气相沉积(MOCVD),在碳纤维(CF)表面构筑厚度为纳米级的羰基铁(CI)壳层,通过改变沉积温度,调控核壳粉体的形貌结构和吸波性能。用X射线衍射仪、扫描电子显微镜和矢量网络分析仪对粉末的结构及电磁性能进行表征并对其吸波性能进行研究。结果表明:随着沉积温度升高(210~240℃),沉积到CF表面的羰基铁颗粒互相“吞并-融合”,此时CF-CI形成了完整的薄膜包覆型核壳结构;沉积温度太高时(270℃)会造成CF表面羰基铁壳层形貌的恶化。通过调节沉积温度,在纳米尺度上可以有效调控CI壳层的形貌,从而调节CF-CI核壳粒子的电磁性能。以核壳形貌及吸波性能为考察指标,最终确定最佳的沉积温度为240℃。以沉积温度为240℃时所获样品的电磁参数,模拟计算出涂层厚度为0.9 mm时,小于-10 dB的吸波带宽最大为4.6 GHz(13.4~18 GHz);涂层厚度为2.0 mm时,反射率达到最小值为-21.5 dB;厚度为0.9~3.9 mm时,在2~18 GHz均能实现吸波强度低于-10 dB。  相似文献   

2.
液相沉积法制备TiO2颗粒表面包覆SiO2纳米膜   总被引:29,自引:0,他引:29  
覃操  王亭杰  金涌 《物理化学学报》2002,18(10):884-889
研究了用液相沉积法在TiO2颗粒表面包覆SiO2纳米膜的过程.通过透射电镜(TEM)和酸溶实验分析,证实本实验在TiO2颗粒表面包覆了一层连续、致密的SiO2纳米膜.ζ-电位分析表明,颗粒表面只需少量包覆就可以显著改变颗粒表面的电动力学行为.采用 X射线荧光光谱分析仪(XRF)测定SiO2包覆量随包覆过程的变化.通过X射线光电子能谱(XPS)分析,获得Ti 2p、Si 2p及 O 1s电子结合能及其相对强度随包覆过程的变化规律,揭示硅酸分子在TiO2颗粒表面的包覆过程.分析表明,初期形成的活性硅酸分子与TiO2颗粒表面的羟基反应形成Ti-O-Si键,后期形成的硅酸分子与已键合在表面的硅酸发生缩合反应,形成连续致密的硅膜,膜层在陈化过程中继续缓慢生长.  相似文献   

3.
A reverse microemulsion method is reported for preparing monodispersed silica-coated gold (or silver) nanoparticles without the use of a silane coupling agent or polymer as the surface primer. This method enables a fine control of the silica shell thickness with nanometer precision. As compared to the St?ber method reported for direct silica coating, which can only coat large gold particles ( approximately 50 nm in diameter) at low concentrations (<1.5 x 10(10) particles/mL), this new approach is capable of coating gold particles of a wide range of sizes (from 10 to 50 nm) at a much higher concentration ( approximately 1.5 x 10(13) particles/mL). Moreover, it enables straightforward surface functionalization via co-condensation between tetraethyl orthosilicate and another silane with the desired functional groups. The functional groups introduced by this method are readily accessible and thus useful for various applications.  相似文献   

4.
To prepare silica-coated hematite particles without agglomeration, the effects of solid fraction, ion content in solution, and designed layer thickness on agglomeration and dispersion behavior after silica coating were examined. Since the ion concentration remained high in suspension after the hematite particles were prepared, these particles formed aggregates by the compression of an electric double layer on the hematite and silica layer produced a solid bridge between primary hematite particles. Silica bridge formation and agglomeration were almost completely prevented by decreasing the ion concentration and solid fraction of the hematite particles. Furthermore, the effects of the silica-layer thickness and structure on the reduction of hematite to iron under hydrogen gas flow and the iron core stability under air were discussed. When the solid fraction was low in suspension to prevent agglomeration during coating, a densely packed structure of nanoparticles formed by heterogeneous nucleation was observed on the silica-layer surface. Since this structure could not completely prevent oxide diffusion, the layer thickness was increased to 40 nm to obtain a stable iron core under air. Although a dense uniform layer was produced at a high solid fraction during coating, its thickness was reduced to 20 nm to completely reduce hematite to iron.  相似文献   

5.
To accurately model metal mobility and bioavailability in soils and sediments, systematic adsorption studies are needed in considering heterogeneous, well characterized minerals. Two important surfaces are iron oxide and silica, which are ubiquitous and associated with one another in the environment playing important roles in metal distribution. This study focuses on the synthesis and characterization of such a system, iron oxide-coated silica. A three-level fractional factorial study was used to determine the optimum conditions for producing goethite-coated silica. The amount of coating achieved was between 0.59 and 21.36 mg Fe g(-1) solid. The most significant factor in coating using either adsorption or precipitation was the particle size of silica, where Fe increased from an average of 0.85 to 9.6 mg Fe g(-1) solid as silica size decreased from 1.5 to 0.2 mm. Other factors investigated, including coating temperature, initial iron concentration, and contact time, were of less importance. The iron oxide coatings were observed to be non-uniform, concentrated in rough concave areas. FTIR revealed a band shift as well as a new band indicating changes in the chemical environment of FeO and SiO bonds; these results along with abrasion studies suggest that the interaction between the oxide coating and silica surface potentially involves chemical forces. Because the nano-sized iron oxide coatings increased surface area, introduced small pores, and changed the surface charge distribution of silica, the coated system demonstrates a greater affinity for Ni compared to that of uncoated silica.  相似文献   

6.
贾梦秋 《高分子科学》2013,31(7):974-983
Hybrid materials based on polymethylphenylsiloxane (PMPS) and organic functionalized silica were synthesized via condensation reaction between silanol and alkoxysilyl groups in the presence of quaternary ammonium hydroxide. The structure of prepared materials was investigated by FTIR and NMR, which indicate that the products have incorporated modified silica into the polymer matrix. The prepared hybrid materials show a satisfactory thermal resistance because the initial decomposition of typical product occurred at nearly 100 K higher than that of the pure polymer according to the thermogravimetric analysis (TGA) results. Differential thermogravimetric analysis (DTGA) data confirm that the thermal degradation of prepared hybrid materials comprises of two steps, of which the first one could be controlled by adjusting the content of silica particles and the ratio of surface groups on the particles. The coating films obtained from hybrid products exhibit good thermal mechanical properties. Therefore, the materials are hoped to be used for the application in thermal resistant coating.  相似文献   

7.
Water repellency of woven cotton fabric was achieved by coating with the aqueous dispersion containing organosilane agent (HDTMS) and fumed silica. The coating agents were applied using padding method and then followed by batching the coated fabric at the ambient temperature for 24 h to allow the condensation reaction between HDTMS silanol group and fumed silica silanol group, rendering silica particles hydrophobic. An ultrasonicator was employed to prepare the homogenous coating dispersion. The water repellency evaluated by water contact angle determination which showed the contact angle over 110° was obtained with low amount of applied HDTMS of 1 wt%. The effect of fumed silica addition on an increase in fiber surface roughness geometry showed the influential result in improving the water contact angle. From durability to washing test, the hydrophobic coatings evidenced from SEM and ATR/FTIR remained adhering to fiber surface, indicating the durability. After washing, the coating on the fabric with fumed silica addition appeared to be scatter particles which made a contribution to the higher contact angle value when compared to sheet-like layer coating in case of HDTMS coating alone.  相似文献   

8.
This paper describes a rapid, simple and one-step method for preparing silica coated gold (Au@SiO2) nanoparticles with fine tunable silica shell thickness and surface functionalization of the prepared particles with different groups. Monodispersed Au nanoparticles with a mean particle size of 16 nm were prepared by citrate reduction method. Silica coating was carried out by mixing the as prepared Au solution, tetraethoxysilane (TEOS) and ammonia followed by microwave (MW) irradiation. Although there are several ways of coating Au nanoparticles with silica in the literature, each of these needs pre-coating step as well as long reaction duration. The present method is especially useful for giving the opportunity to cover the colloidal Au particles with uniform silica shell within very short time and forgoes the use of a silane coupling agent or pre-coating step before silica coating. Au@SiO2 nanoparticles with wide range of silica shell thickness (5-105 nm) were prepared within 5 min of MW irradiation by changing the concentration of TEOS only. The size uniformity and monodispersity were found to be better compared to the particles prepared by conventional methods, which were confirmed by dynamic light scattering and transmission electron microscopic techniques. The prepared Au@SiO2 nanoparticles were further functionalized with amino, carboxylate, alkyl groups to facilitate the rapid translation of the nanoparticles to a wide range of end applications. The functional groups were identified by XPS, and zeta potential measurements.  相似文献   

9.
A water soluble calixarene[4]arene 1 with four guanidinium substituents on the upper rim and propyl groups below was anchored in the propylamino coating of smooth silica particles, and a tricarboxylate-tripod porphyrin 2 of 2 nm height was attached to these cationic islands. The molecular complex with a height of 3 nm was unequivocally detected on the particles' surface by atomic force microscopy in the tapping mode. Although deposits of 1 (height: 1 nm) and 2 (height: 2 nm) were also evident on the smooth silica particles, 3 nm seems to be the minimal height to identify single objects. The soft surface of the particles not only allowed tight attachment of molecular edge amphiphiles by the hydrophobic effect but also immobilized the particles on the mica surface by amine-silicate interactions.  相似文献   

10.
Nanocomposite materials containing 10% and 20% iron oxide/silica, Fe2O3/SiO2 (w/w), were prepared by direct hydrolysis of aqueous iron III nitrate solution in sols of freshly prepared spherical silica particles (St?ber particles) present in their mother liquors. This was followed by aging, drying, calcination up to 600 degrees C through two different ramp rates, and then isothermal calcinations at 600 degrees C for 3 h. The calcined and the uncalcined (dried at 120 degrees C) composites were characterized by thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), N2 adsorption/desorption techniques, and scanning electron microscopy as required. XRD patterns of the calcined composites showed no line broadening at any d-spacing positions of iron oxide phases, thereby reflecting the amorphous nature of Fe2O3 in the composite. The calcined composites showed nitrogen adsorption isotherms characterizing type IV isotherms with high surface area. Moreover, surface area increased with the increasing of the iron oxide ratio and lowering of the calcination ramp rate. Results indicated that iron oxide particles were dispersed on the exterior of silica particles as isolated and/or aggregated nanoparticles. The formation of the title composite was discussed in terms of the hydrolysis and condensation mechanisms of the inorganic FeIII precursor in the silica sols. Thereby, fast nucleation and limited growth of hydrous iron oxide led to the formation of nanoparticles that spread interactively on the hydroxylated surface of spherical silica particles. Therefore, a nanostructured composite of amorphous nanoparticles of iron oxide (as a shell) spreading on the surface of silica particles (as a core) was formed. This morphology limited the aggregation of Fe2O3 nanoparticles, prevented silica particle coalescence at high temperatures, and enhanced thermal stability.  相似文献   

11.
Thermosensitive PNIPAM microcontainers were prepared by using silica particles as template. Silica particles were prepared by the St?ber method and surface modified with linear P(NIPAM-co-MPS) chains. PNIPAM shell was then fabricated on the P(NIPAM-co-MPS)-modified silica particles through precipitation polymerization of NIPAM and MBA. Finally, PNIPAM microcontainers were obtained by removing the silica cores with NaOH. The materials were characterized by TEM, FTIR, GPC, and DLS. The PNIPAM microcontainers exhibit good thermosensitivity. The method to fabricate thermosensitive PNIPAM shell can be generalized to a versatile method for preparing PNIPAM shell on particles with silica surface, which includes surface modification with P(NIPAM-co-MPS) and precipitation polymerization of NIPAM and MBA using the modified particles as seed. Through this method, PNIPAM shell was successfully fabricated on iron oxide/silica nanostructures with a wormlike shape and relatively large size, which demonstrates the versatility of the method.  相似文献   

12.
A series of silica nano-particles with different size were prepared by sol–gel technique, then surface modification by using cyclic carbonate functional organoalkoxysilane (CPS) was performed. Various amounts of carbonated silica particles directly added into carbonated soybean oil (CSBO) and carbonated polypropylene glycol (CPPG) resin mixture to prepare polyurethane–silica nanocomposite coating compositions by nonisocyanate route using an aliphatic diamine as a curing agent. Cupping, gloss, impact, and taber abrasion tests were performed on aluminum panels coated with those nano-composite formulations and tensile tests, thermogravimetric and SEM analyses were conducted on the free films prepared from the same coating formulations. An increase in abrasion resistance of CSBO-CPPG resin combination with the addition of silica was observed. In addition, the maximum weight loss of CSBO-CPPG resin combination was shifted to higher temperatures with incorporation of silica nano-particles The positive effect of modified silica particles on thermal stability of CSBO-CPPG system could be explained in such a way that PPG chains are able to disperse particles in the medium throughout the interactions between ether linkages and silanol groups.  相似文献   

13.
Tin oxide-doped hybrid particles were prepared by a wet chemical process with organic-inorganic (phenyl/silica) hybrid particles in an alcoholic solution. The phenyl/silica hybrid particles, with a diameter of ca. 790 nm were used as a new support material for tin oxide (SnO2) particles from tin(IV) chloride. The surface of the particles was modified via nitration of aromatic groups in the particles, to promote formation of the tin oxide coating on the particles. The thickness and surface morphology of the tin oxide layer coated on the nitrated-phenyl/silica hybrid particles could be controlled by varying the tin(IV) chloride concentration and reaction time. The size and morphology of the resultant particles were investigated with field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The particles obtained were also characterised by infrared (FTIR) and solid-state 13C magic angle spinning nuclear magnetic resonance (13C-CP/MAS NMR) spectroscopy. The effect of processing parameters on the crystallinity and structure of the doped hybrids were confirmed by X-ray diffraction (XRD) patterns.  相似文献   

14.
The preparation, characterization, and preliminary biomedical application of various nitric oxide (NO)-releasing fumed silica particles (0.2-0.3 microm) are reported. The tiny NO-releasing particles are synthesized by first tethering alkylamines onto the surface of the silica using amine-containing silylation reagents. These amine groups are then converted to corresponding N-diazeniumdiolate groups via reaction with NO(g) at high pressure in the presence of methoxide bases (e.g., NaOMe). N-Diazeniumdiolate groups were found to form more readily with secondary amino nitrogens than primary amino nitrogens tethered to the silica. Different alkali metal cations of the methoxide bases, however, have little effect on the degree of N-diazeniumdiolate formation. The N-diazeniumdiolate moieties attached on the silica surface undergo a primarily proton-driven dissociation to NO under physiological conditions, with an "apparent" reaction order somewhat greater than 1 owing to local increases in pH at the surface of the particles as free amine groups are generated. The rates of N-diazeniumdiolate dissociation are further related to the parent amine structures and the pH of the soaking buffer. The N-diazeniumdiolate groups also undergo slow thermal dissociation to NO, with zero-order dissociation observed at both -15 and 23 degrees C. It is further shown that the resulting NO-releasing fumed silica particles can be embedded into polymer films to create coatings that are thromboresistant, via the release of NO at fluxes that mimic healthy endothelial cells (EC). For example a polyurethane coating containing 20 wt % of NO-releasing particles prepared with pendant hexane diamine structure (i.e., Sil-2N[6]-N(2)O(2)Na) is shown to exhibit improved surface thromboresistivity (compared to controls) when used to coat the inner walls of extracorporeal circuits (ECC) employed in a rabbit model for extracorporeal blood circulation.  相似文献   

15.
Silica/poly(methyl methacrylate) nanocomposite latex particles have been synthesized by emulsion polymerization of methyl methacrylate using a nonionic surfactant: nonylphenol poly(oxyethylene) and three different initiators, namely: 2,2′-azobis(2-amidinopropane) dihydrochloride (AIBA), potassium persulfate (KPS) and azobis(isobutyronitrile) (AIBN), being cationic, anionic and nonionic, respectively. A silica sol with an average diameter of 68 nm was used as the seed. The polymerization reaction was conducted under alkaline conditions in order to evaluate the role of the surface charge of the hydrophilic silica on the coating reaction. AIBA was found to be adsorbed on the silica surface owing to electrostatic interactions of the amidine function of the cationic initiator with the silanolate groups of the oxide surface, while the anionic and the nonionic initiators did not adsorb on silica under the same conditions. Nonetheless, whatever the nature of the initiator, polymerization took place on the silica particles as evidenced by transmission electron microscopy. The extent of interaction between the inorganic surface and the polymer particles was quantified by means of ultracentrifugation and a material balance. As much as 65% by weight of the total polymer formed was found to be present at the silica surface using AIBA, while only 40% for KPS and 25% for AIBN was found to cover the silica particles under alkaline conditions. We demonstrate that by using a cationic initiator and by controlling the pH of the suspension it is possible to significantly decrease the amount of free polymer. Coating of the silica particles took place through a kind of in situ heterocoagulation mechanism. Received: 8 December 2000 Accepted: 22 February 2001  相似文献   

16.
Hematite template route to hollow-type silica spheres   总被引:1,自引:0,他引:1  
Hollow-type silica spheres with controlled cavity size were prepared from Fe2O3-SiO2 core-shell composite particles by selective leaching of the iron oxide core materials using acidic solution. The spherical Fe2O3 core particles with a diameter range of 20-400 nm were first prepared by the hydrolysis reaction of iron salts. Next, the Fe2O3-SiO2 core-shell particles were prepared by the deposition of a SiO2 layer onto the surface of Fe2O3 particles using a two-step coating process, consisting of a primary coating with sodium silicate solution and a subsequent coating by controlled hydrolysis of tetraethoxysilicate (TEOS). The Fe2O3 core was then removed by dissolving with acidic solution, giving rise to hollow-type silica particles. Scanning electron microscopy clearly revealed that the cavity size was closely related to the initial size of the core Fe2O3 particle. According to the cross-sectional view obtained by transmission electron microscopy, the silica shell thickness was about 10 nm. The porous texture of the hollow-type silica particles was further characterized by nitrogen adsorption-desorption isotherm measurements.  相似文献   

17.
We describe a method for the synthesis of multigram amounts of silica nanoparticles which are controllably hydrophobized to different extents using a room temperature vapor phase silanization process. The extent of hydrophobization of the particles can be adjusted by changing the amount of dichlorodimethylsilane reagent used in the reaction. The method produces particles with good uniformity of surface coating; the silane coating varies from monolayer coverage at low extents of hydrophobization to approximately trilayer at high extents of hydrophobization. Acid-base titration using conductivity detection was used to characterize the extent of hydrophobization which is expressed as the percent of surface silanol groups remaining after silanization. Particles with %SiOH ranging from 100% (most hydrophilic) to 20% (most hydrophobic) were hand shaken with water/methanol mixtures and produced either a particle dispersion, foam, climbing films, or liquid marbles. The type of colloidal structure produced is discussed in terms of the liquid-air-particle contact angle and the energy of adsorption of the particles to the liquid-air surface.  相似文献   

18.
利用含氟疏水基团的梯度分布,结合草莓形纳米SiO2粒子提供的双重粗糙表面,制备了具有类"荷叶效应"的超疏水涂膜,水接触角达(174.2±2)°,滞后角几乎接近0°.通过原子力显微镜、扫描电镜和水接触角的测试对膜表面形貌及疏水性能进行了表征;探讨了其表面微观结构与表面疏水性能的关系.草莓形复合粒子在膜表面的无规则排列赋予涂膜表面不同等级的粗糙度,使水滴与涂膜表面接触时能够形成高的空气捕捉率,这种微观结构与疏水基团的梯度分布相结合,赋予了含氟硅丙烯酸酯乳液涂膜表面超疏水性能.  相似文献   

19.
单分散聚丙烯酸丁酯-二氧化硅核壳粒子的制备   总被引:3,自引:0,他引:3  
近年来,有机-无机核壳材料因其具有可调的光、电、磁等特性而备受关注.无机物外壳可以增强粒子的热力学稳定性、机械强度和抗拉性能.高分子乳胶粒内核具有弹性,且易成膜,外部包覆无机物的乳胶粒可结合两者特性并产生协同效应.  相似文献   

20.
Maghemite colloidal particles are coated with a silica layer using a silicon alkoxide as silica precursor. The coating process is studied by electrophoresis, quasi-elastic light scattering, nitrogen adsorption, and infrared spectrometry analyses. The conditions of complete coverage of the iron oxide particles by silica and the nature of the maghemite–silica interface are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号