首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
INTRODUCTIONRecently, solution-state assembly of block copolymers has attracted much interest. On the one hand, theversatility of morphology control can be used for the preparation of unique nanostructured materials with variousarchitectures[1-8]. On the other hand, some self-assembled structures are biomimetic[9,10]. The balance betweenthree major forces acting on the system affects block copolymer morphologies in solutions[11,12]. These threeforces include the stretching of the core-for…  相似文献   

2.
The formation and morphological characteristics of crew‐cut aggregates from blends of polystyrene‐b‐poly(acrylic acid) diblock copolymer and polystyrene homopolymer in solution were studied by static light scattering, transmission electron microscopy and size exclusion chromatography. The crew‐cut aggregates, consisting of a polystyrene core and a poly(acrylic acid) corona, were prepared by direct dissolution of the polymer blends in a selective solvent mixture consisting of 93 wt % dimethylformamide and 7 wt % water. It is found that the aggregation behavior depends strongly on the relative volume fractions of the block copolymer and homopolymer in the blends. This is a result of the difference in solubility between the copolymer and the homopolymer in solution which, in turn, influences their miscibility and mutual solubility and consequently the morphology of the formed crew‐cut aggregates. Specifically, when the homopolymer fraction is low, it is mainly dissolved in the cores of the crew‐cut aggregates formed by the block copolymer. When the homopolymer fraction exceeds its solubility limit in the copolymer micelles, aggregates of another type are formed which contain a major fraction of the homopolymer. These aggregates are usually much larger than the primary micelles and have an internal structure due to the formation of reverse micelles from the dissolved block copolymer chains. The importance of thermodynamic vs. kinetic aspects during the formation of the crew‐cut aggregates is also discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1469–1484, 1999  相似文献   

3.
The morphology of micelles formed from blends of linear and cyclic poly(styrene-b-isoprene) (PS-b-PI) block copolymers has been investigated in solution using dynamic light scattering (DLS) and in thin solid deposits by atomic force microscopy (AFM) and transmission electron microscopy under cryogenic conditions (cryo-TEM). Micelles of the pure cyclic PS(290)-b-PI(110) copolymers are wormlike cylindrical objects built by unidirectional aggregation of 33 nm wide sunflower micelles, while the linear block copolymer having the same volume fraction and molar mass forms spherical micelles 40 nm in diameter. The DLS, AFM, and cryo-TEM results consistently show that the addition of the linear copolymer (even for amounts as low as 5% w/w) to the cyclic copolymer rather favors the formation of spherical micelles at the expense of the cylindrical aggregates. Those results clearly show that the linear block copolymer chains can be used to stabilize the thermodynamically unstable elementary sunflower micelle. The thermal stability of the micelles (from the pure copolymers and from the blends) has been examined in solid deposits with in situ AFM measurements. Coalescence starts at about 70 degrees C, and the surface roughness shows a two-step decrease toward a fully homogeneous and flat structure.  相似文献   

4.
The water content-dependent supramolecular structure formation of polystyrene-block-poly(acrylic acid) (PS-b-PAA) copolymer in the presence of a fourth-generation amine-terminated poly(amido amine) dendrimer (PAMAM) is investigated by dynamic light scattering, turbidity measurements, and transmission electron microscopy. The solvent system for this study is a mixture of dioxane/THF and water. A very complex turbidity profile is observed with increasing water content in the system and is explained by the presence of various aggregated structures based on strong interactions between the amine-containing dendrimers and the poly(acrylic acid) blocks of the polymer. The onset of the self-assembly of single chains of PS-b-PAA (primary structure) into single and multiple dendrimer core inverse micelles (secondary structure) is detected as very low water contents of cw < 2% wt (cwc). These micelles consist of dendrimers coated with PAA blocks, which are connected to the corresponding PS chains that form the corona. Further addition of water leads to an association of these micelles into compound multiple dendrimer core inverse micelles (tertiary structure) in the range of cw = approximately 6 to approximately 10% wt. At still higher water content, some of the acrylic acid chains of the block copolymer move from the vicinity of the dendrimer to the outside of the aggregates, resulting in a decrease in the size of the formed structures and the acquisition of progressively increasing hydrophilic character of the aggregates. Multiple dendrimer core inverse onion micelles are formed, which agglomerate into compound multiple dendrimer core inverse onion micelles at cw = approximately 12 to approximately 18% wt. Above this water content, vesicular structures are formed. The complexity is unusual for block copolymer systems and illustrates the importance of strong interactions in structure formation.  相似文献   

5.
Morphology and structure of aqueous block copolymer solutions based on polystyrene-block-poly(ethylene oxide) (PS-b-PEO) of two different compositions, a cationic surfactant, cetyl pyridinium chloride (CPC), and either platinic acid (H2PtCl6.6H2O) or Pt nanoparticles were studied using a combination of analytical ultracentrifugation (AUC), transmission electron microscopy (TEM), and small angle neutron scattering (SANS). These studies combining methods contributing supplemental and analogous structural information allowed us to comprehensively characterize the complex hybrid systems and to discover an isotope effect when H2O was replaced with D2O. In particular, TEM shows formation of both micelles and larger aggregates after incorporation of platinic acid, yet the amount of aggregates depends on the H2PtCl6.6H2O concentration. AUC reveals the presence of micelles and micellar clusters in the PS-b-PEO block copolymers solution and even larger (supermicellar) aggregates in hybrids (with CPC). Conversely, SANS applied to D2O solutions of the similar species indicates that micelles are spherical and no other micellar species are found in block copolymer solutions. To reconcile the SANS and AUC data, we carried out AUC examination of the corresponding D2O block copolymer solutions. These measurements demonstrate a pronounced isotope effect on micelle aggregation and micelle size, i.e., no micelle aggregation in D2O solutions, revealing good agreement of AUC and SANS data.  相似文献   

6.
We herein report the formation of two complex nanostructures, toroidal micelles and bicontinuous nanospheres, by the self‐assembly of the single structurally simple crystalline‐b‐coil diblock copolymer poly[bis(trifluoroethoxy)phosphazene]‐b‐poly(styrene), PTFEP‐b‐PS, in one solvent (THF) and without additives. The nature of these nanostructures in solution was confirmed by DLS and cryo‐TEM experiments. The two morphologies are related by means of a new type of reversible morphological evolution, bicontinuous‐to‐toroidal, triggered by changes in the polymer concentration. WAXS experiments showed that the degree of crystallinity of the PTFEP chains located at the core of the toroids was higher than that in the bicontinuous nanospheres, thus indicating that the final morphology of the aggregates is mostly determined by the ordering of the PTFEP core‐forming blocks.  相似文献   

7.
A series of polylactide-poly(ethylene glycol) (PLA-PEG) block copolymers with a high PEG fraction were synthesized by the ring-opening polymerization of L- or D-lactide in the presence of mono- or dihydroxyl PEG using nontoxic zinc lactate as a catalyst. Micelles were then prepared by direct dissolution of the obtained water-soluble copolymers in an aqueous medium without heating or using any organic solvents. Large anisotropic micelles instead of conventional spherical ones were observed from a transmission electron microscopy examination. Various parameters influencing the structure of the novel micelles were considered, such as the copolymer chain structure, molar mass, PEG fraction, copolymer concentration, and stereocomplexation between L- and D-PLA blocks. Anisotropic micelles were obtained for both diblock and triblock copolymers but vanished with increasing molar mass of the copolymers. The morphology of micelles strongly depends on the PEG fraction. Anisotropic micelles were found only in an intermediate EO/LA ratio range in which a higher PEG fraction leads to a higher length/width ratio of micelles. Stereocomplexation between L- and D-PLA or a lower concentration disfavors the formation of anisotropic micelles. Under appropriate concentrations, spherical and anisotropic micelles coexist in the same micellar solution. Moreover, it was found that anisotropic micelles are susceptible to further self-assemble into more organized complex aggregates. Similar results were obtained from light scattering and aqueous gel permeation chromatography measurements. A novel model is proposed to explain the formation of anisotropic micelles and the effects of various parameters on the structure of micelles in an aqueous medium.  相似文献   

8.
The interaction of amphiphilic block copolymer, polystyrene-block-poly(ethylene oxide) (PS-b-PEO), with anionic surfactant, sodium dodecyl sulfate (SDS), in aqueous media has been studied by sedimentation in ultracentrifuge. Three well-defined populations of hybrid aggregates corresponding to micelles, micellar clusters, and supermicellar aggregates were detected in the PS-b-PEO/SDS aqueous solutions at various rotation rates. Parameters of all the micellar aggregates were characterized depending on the SDS loading. An increase in the SDS loading was found to result in an increase in block copolymer/surfactant micelle size and weight at the SDS concentration of 0.8x10(-3) mol/L and in a slight decrease of both parameters at critical micelle concentration and at higher concentration. This decrease was caused by incorporation of SDS molecules in block copolymer micelles followed by charging the PS core and repulsion between similar charges. Using dichlorotetrapyridine rhodium(III)chloride hexahydrate ([Rh(Py)(4)Cl(2)]Clx6H(2)O), ion exchange of surfactant counterions in the hybrid PS-b-PEO/SDS system for Rh cations was carried out, which allowed saturating the micellar structures with Rh species. Subsequent reduction of the Rh-containing hybrid solutions with NaBH(4) resulted in the formation of Rh nanoparticles with a diameter of 2-3 nm mainly located in the block copolymer micellar aggregates. Copyright 2000 Academic Press.  相似文献   

9.
The adsorption of a zwitterionic diblock copolymer, poly(2-(diethylamino)ethyl methacrylate)-block-poly(methacrylic acid) (PDEA59-PMAA50), at the silica/aqueous solution interface has been characterised as a function of pH. In acidic solution, this copolymer forms core-shell micelles with the neutral PMAA chains being located in the hydrophobic cores and the protonated PDEA chains forming the cationic micelle coronas. In alkaline solution, the copolymer forms the analogous inverted micelles with anionic PMAA coronas and hydrophobic PDEA cores. The morphology of the adsorbed layer was observed in situ using soft-contact atomic force microscopy (AFM): this technique suggests the formation of a thin adsorbed layer at pH 4 due to the adsorption of individual copolymer chains (unimers) rather than micelle aggregates. This is supported by the remarkably low dissipation values and the relatively low degrees of hydration for the adsorbed layers, as estimated using a combination of quartz crystal microbalance with dissipation monitoring (QCM-D) and optical reflectometry (OR). In alkaline solution, analysis of the adsorption data suggests a conformation for the adsorbed copolymers where one block projects normal to the solid/liquid interface; this layer consists of a hydrophobic PDEA anchor block adsorbed on the silica surface and an anionic PMAA buoy block extending into the solution phase. Tapping mode AFM studies were also carried out on the silica surfaces after removal from the copolymer solutions and subsequent drying. Interestingly, in these cases micelle-like surface aggregates were observed from both acidic and alkaline solutions. The lateral dimension of the aggregates seen is consistent with the corresponding hydrodynamic diameter of the copolymer micelles in bulk solution. The combination of the in situ and ex situ AFM data provides evidence that, for this copolymer, micelle aggregates are only seen in the ex situ dry state as a result of the substrate withdrawal and drying process. It remains unclear whether these aggregates are caused by micelle deposition at the surface during the substrate withdrawal from the solution or as a result of unimer rearrangements at the drying front as the liquid recedes from the surface.  相似文献   

10.
Complex polymeric nanospheres were formed in water from comb‐like amphiphilic block copolymers. Their internal morphology was determined by three‐dimensional cryo‐electron tomographic analysis. Varying the polymer molecular weight (MW) and the hydrophilic block weight content allowed for fine control over the internal structure. Construction of a partial phase diagram allowed us to determine the criteria for the formation of bicontinuous polymer nanosphere (BPN), namely for copolymers with MW of up to 17 kDa and hydrophilic weight fractions of ≤0.25; and varying the organic solvent to water ratio used in their preparation allowed for control over nanosphere diameters from 70 to 460 nm. Significantly, altering the block copolymer hydrophilic–hydrophobic balance enabled control of the internal pore diameter of the BPNs from 10 to 19 nm.  相似文献   

11.
In this paper, we describe an efficiently physical method of electric-field-assisted assembly and alignment of block copolymer micelles. Amphiphilic block copolymer polystyrene-b-poly(acrylic acid) (PS-b-PAA) self-assembles into spherical micelles in water consisting of a core formed by the insoluble PS blocks and a shell formed by the soluble PAA blocks. When applying an alternating voltage to micelles solution dispersed onto a thin gap of coplanar metallic electrode, we generate directional arrays of highly ordered aggregates in long range. The formation of the ordered aggregates is due to the adjustment of interactions between micelles induced by dielectrophoretic forces in alternating electric field. The morphologies and arrays of particles become more regular with increasing of the strength and frequency of electric field. Voltage and frequency of the electric field and other parameters, such as particles concentration and, the viscosity and dielectric constant of the medium, affect the assembly process.  相似文献   

12.
Two samples of poly(sodium(sulfamate-carboxylate)isoprene)-block-poly(ethylene oxide) copolymer (SCIEO-1 and SCIEO-2) differing in molecular weight and relative length of polyelectrolyte blocks have been used as templates for the synthesis of cadmium sulfide (CdS) nanoparticles in aqueous media. The double-hydrophilic copolymer SCIEO has very high 1D charge density, and its polymer chain structure mimics that of polysaccharide heparin. It is soluble in aqueous media, but the addition of cadmium acetate (Cd(Ac)2) to its aqueous solution causes the formation of micellar aggregates with Cd2+containing insoluble cores above the threshold Cd2+ concentration. The trapped Cd2+ ions can be chemically transformed to CdS nanoparticles. The stability of hybrid SCIEO/CdS micelles depends on the ratio of PEO-to-SCI lengths: it was found that the SCIEO-2 copolymer with sufficiently long PEO block behaves as an effective stabilizer for the synthesis of CdS nanoparticles embedded in micelles, while SCIEO-1 does not. The morphology of aggregates varies with the Cd-to-SCI ratios and ranges from spherical to mixture of spherical and necklace-like micellar aggregates. A number of experimental techniques including static and dynamic light scattering, fluorescence correlation spectroscopy, atomic force and transmission electron microscopy, UV-vis, and fluorescence spectroscopy were employed for the characterization of both CdS containing hybrid micelles and embedded CdS nanoparticles.  相似文献   

13.
Nanostructured macromolecules, such as block copolymers, elucidate the fundamental principles governing self-organization in soft condensed matter. Significant experimental and theoretical advances regarding complex morphology development in bulk copolymers and their homopolymer blends have recently been achieved. New equilibrium block copolymer morphologies have been reported for copolymers in the super-strong segregation regime, and the pathways by which bicontinuous morphologies in copolymers and copolymer blends form have been identified. Emerging research directions target chemically tailored copolymer systems as designer templates for uniform ceramic nanostructures and field-responsive devices with switchable molecular orientation.  相似文献   

14.
RAFT聚合法制备聚合物胶束及其应用前景   总被引:1,自引:0,他引:1  
杨正龙  周丹  陈秋云 《化学进展》2011,23(11):2360-2367
聚合物胶束由于具有优良的组织渗透性、增容效果好、结构多样性和热稳定性等特点,成为国内外研究的热点之一。本文综述了近几年发展起来的一些具有特殊结构和特殊性能的双亲性嵌段聚合物胶束的研究进展,详细阐述了RAFT聚合法合成聚合物胶束的机理和优势,表明了RAFT聚合法可直接在水溶液中方便快捷地制备出温度和pH双响应性聚合物胶束。然而,当聚合物胶束的浓度低于其临界胶束浓度时,胶束的稀释效应大大影响了其实际应用,为提高聚合物胶束的稳定性,文章归纳总结了一系列有关壳交联聚合物胶束的制备方法及研究进展。最后,文章展望了聚合物胶束在药物可控释放、靶向、生物成像、催化剂负载及其他领域的应用前景。  相似文献   

15.
Cylindrical block copolymer micelles with a crystalline poly(ferrocenyldimethylsilane) (PFDMS) core and a long corona-forming block are known to elongate through an epitaxial growth mechanism on addition of further PFDMS block copolymer unimers. We now report that addition of the semicrystalline homopolymer PFDMS(28) to monodisperse short (ca. 200 nm), cylindrical seed micelles of PFDMS block copolymers results in the formation of aggregated structures by end-to-end coupling to form micelle networks. The resulting aggregates were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). In some cases, a core-thickening effect was also observed where the added homopolymer appeared to deposit and crystallize at the core-corona interface, which resulted in an increase of the width of the micelles within the networks. No evidence for aggregation was detected when the amorphous homopolymer poly(ferrocenylethylmethylsilane) (PFEMS(25)) was added to the cylindrical seed micelles whereas similar behavior to PFDMS(28) was noted for semicrystalline polyferrocenyldimethylgermane (PFDMG(30)). This suggested that the crystallinity of the added homopolymer is critical for subsequent end-to-end coupling and network formation to occur. We also explored the tendency of the cylindrical seed micelles to form aggregates by the addition of PI-b-PFDMS (PI = polyisoprene) block copolymers (block ratios 6:1, 3.8:1, 2:1, or 1:1), and striking differences were noted. The results ranged from typical micelle elongation, as reported in previous work, at high corona to core-forming block ratios (PI-b-PFDMS; 6:1) to predominantly end-to-end coupling at lower ratios (PI-b-PFDMS; 2:1, 1:1) to form long, essentially linear structures. The latter process, especially for the 2:1 block copolymer, led to much more controlled aggregate formation compared with that observed on addition of homopolymers.  相似文献   

16.
Ring-opening metathesis polymerization was used to generate an ABC triblock copolymer, containing complementary diamidopyridine (DAP) and thymine (THY) outer blocks, which assembles into spherical aggregates held together by DAP-THY noncovalent interactions. Addition of THY-containing small guest molecules results in complete opening and deaggregation of the block copolymer micelle. This molecular recognition and macroscopic response shows high selectivity to the guest structure, and tolerates only a small amount of conformational mobility in the THY guest. On the other hand, addition of a small DAP-containing guest does not break the aggregates, but instead, results in new micelles which show a different selectivity profile from the parent morphology. We have examined the effect of a number of structural features in the block copolymers, on both the extent and selectivity of their macroscopic response to guests (that is, opening of the micelle). This study has resulted in a set of structural guidelines, which help in the design of effective molecule-responsive micelles for applications in selective drug delivery, sensing, and surface patterning.  相似文献   

17.
Several new multicompartment micellar structures have been identified by cryogenic transmission electron microscopy (cryoTEM) from the aqueous self-assembly of mu-[poly(ethylethylene)][poly(ethylene oxide)][poly(perfluoropropylene oxide)] (mu-EOF) miktoarm star terpolymers. This work extends our previous studies, in which it was found that, upon decreasing the length of the hydrophilic block (O), the resulting micelles evolved from "hamburger" micelles to segmented worms and ultimately to nanostructured bilayers and vesicles. In the terpolymers examined here segmented ribbons and bilayers were found at an intermediate composition between segmented worms and nanostructured bilayers, provided that the fluoropolymer (F) was the minority component in the micelle core. On the other hand, when the F block exceeded the chain length of the hydrocarbon block (E), the superhydrophobic F block imposed a "double frustration" on the self-assembly of the mu-EOF(2-9-5) terpolymer; while F prefers to minimize its interfacial contact with the O corona, it must occupy the majority of the micellar core. Therefore, a richer variety of multicompartment micelles, including well-defined segmented worms, raspberry-like micelles, and multicompartmentalized worms, were formed from one terpolymer, as revealed by cryoTEM. Despite the complexity and variety of the observed aggregate morphologies, a small number of common structural elements can be invoked to interpret the observed micelles and to relate a given structure to the terpolymer composition.  相似文献   

18.
The salt effect on the complex formation of poly(acrylamide)- block-poly(sodium acrylate) (PAM- b-PAA) as a neutral-anionic block copolymer and dodecyltrimethylammonium bromide (DTAB) as a cationic surfactant at different NaBr concentrations, CNaBr, was investigated by turbidimetric titration, steady-state fluorescence spectroscopy, and dynamic light scattering. At C NaBr < 0.25 M, DTAB molecules may form micelle-like aggregates on PAM- b-PAA chains to form a PAM- b-PAA/DTAB complex above the critical surfactant concentration C critical for the onset of complex formation. In the region of relatively high turbidity, a larger complex is likely to form a core-shell structure, of which the core is a dense and disordered microphase made of surfactant micelles connected by the PAA blocks. The corona was a diffuse shell of PAM chains, and it ensured steric stability. At CNaBr = 0.25 M, a higher electrostatic intermicellar repulsion and intercomplex repulsion induced by a large amount of bound DTAB micelles may lead to a redissolution of large colloidal complexes into intrapolymer complexes. Moreover, a salt-enhancing effect on the complex formation was observed in the PAM- b-PAA/DTAB system; the critical surfactant concentration decreased with increasing salt concentration at CNaBr < 0.10 M. The salt-enhancing effect is due to the larger increase of interaction in comparison to the screening of the interaction.  相似文献   

19.
The complex microstructures of amphiphilic ABC linear triblock copolymers in which one of the end blocks is relatively short and hydrophilic, and the other two blocks B and C are hydrophobic in a dilute solution, have been investigated by the real-space implementation of self-consistent field theory (SCFT) in two dimensions (2D). In contrast to diblock copolymers in solution, the aggregation of triblock copolymers are more complicated due to the presence of the second hydrophobic blocks and, hence, big ranges of parameter space controlling the morphology. By tailoring the hydrophobic degree and its difference between the blocks B and C, the various shapes of vesicles, circlelike and linelike micelles possibly corresponding to spherelike, and rodlike micelles in 3D, and especially, peanutlike micelles not found in diblock copolymers are observed. The transition from vesicles to circlelike micelles occurs with increasing the hydrophobicity of the blocks B and C, while the transition from circlelike micelles to linelike micelles or from the mixture of micelles and vesicles to the long linelike micelles takes place when the repulsive interaction of the end hydrophobic block C is stronger than that of the middle hydrophobic block B. Furthermore, it is favorable for dispersion of the block copolymer in the solvent into aggregates when the repulsion of the solvent to the end hydrophobic block is larger than that of the solvent to the middle hydrophobic block. Especially when the bulk block copolymers are in a weak segregation regime, the competition between the microphase separation and macrophase separation exists and the large compound micelle-like aggregates are found due to the macrophase separation with increasing the hydrophobic degree of blocks B and C, which is absent in diblock copolymer solution. The simulation results successfully reproduce the existing experimental ones.  相似文献   

20.
“Crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers can be prepared by dissolving the copolymers in N,N-dimethylformamide (DMF) and adding water to the solution to induce aggregation of the styrene segments of the copolymer chains. The aggregates are formed at near-equilibrium conditions, and their structures are subsequently frozen by isolating them into aqueous solution by dialysis. Aggregates of a number of different morphologies have been prepared. The morphologies, identified by transmission electron microscopy, consist of spheres, rods, vesicles, lamellae, large compound vesicles, large compound micelles, etc. The formation of aggregates of different morphologies can be controlled by varying the copolymer composition, by changing the initial copolymer concentration in DMF, by adding ions (e.g. NaCl, CaCl2, HCl and NaOH, etc), or by adding homopolystyrene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号