首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The block‐Lanczos method serves to compute a moderate number of eigenvalues and the corresponding invariant subspace of a symmetric matrix. In this paper, the convergence behavior of nonrestarted and restarted versions of the block‐Lanczos method is analyzed. For the nonrestarted version, we improve an estimate by Saad by means of a change of the auxiliary vector so that the new estimate is much more accurate in the case of clustered or multiple eigenvalues. For the restarted version, an estimate by Knyazev is generalized by extending our previous results on block steepest descent iterations and single‐vector restarted Krylov subspace iterations. The new estimates can also be reformulated and applied to invert‐block‐Lanczos methods for solving generalized matrix eigenvalue problems.  相似文献   

2.
The numerical methods for solving large symmetric eigenvalue problems are considered in this paper.Based on the global Lanczos process,a global Lanczos method for solving large symmetric eigenvalue problems is presented.In order to accelerate the convergence of the F-Ritz vectors,the refined global Lanczos method is developed.Combining the implicitly restarted strategy with the deflation technique,an implicitly restarted and refined global Lanczos method for computing some eigenvalues of large symmetric matrices is proposed.Numerical results show that the proposed methods are efficient.  相似文献   

3.
The spectral transformation Lanczos method is very popular for solving large scale real symmetric generalized eigenvalue problems. The method uses a special inner product so that the symmetric Lanczos method can be used. Sometimes, a semi-definite inner product must be used. This may lead to instabilities and break-down. In this paper, we suggest cures for breakdown by use of implicit restarting and the pseudo-Lanczos method.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

4.
In the quadratic eigenvalue problem (QEP) with all coefficient matrices symmetric, there can be complex eigenvalues. However, some applications need to compute real eigenvalues only. We propose a Lanczos‐based method for computing all real eigenvalues contained in a given interval of large‐scale symmetric QEPs. The method uses matrix inertias of the quadratic polynomial evaluated at different shift values. In this way, for hyperbolic problems, it is possible to make sure that all eigenvalues in the interval have been computed. We also discuss the general nonhyperbolic case. Our implementation is memory‐efficient by representing the computed pseudo‐Lanczos basis in a compact tensor product representation. We show results of computational experiments with a parallel implementation in the SLEPc library.  相似文献   

5.
王元媛  卢琳璋 《数学研究》2008,41(3):240-250
在求块Toeplitz矩阵束(Amn,Bmn)特征值的Lanczos过程中,通过对移位块Toepltz矩阵Amn-ρBmn进行基于sine变换的块预处理,从而改进了位移块Toeplitz矩阵的谱分布,加速了Lanczos过程的收敛速度.该块预处理方法能通过快速算法有效快速执行.本文证明了预处理后Lanczos过程收敛迅速,并通过实验证明该算法求解大规模矩阵问题尤其有效.  相似文献   

6.
Let A be a square symmetric n × n matrix, φ be a vector from n, and f be a function defined on the spectral interval of A. The problem of computation of the vector u = f(A)φ arises very often in mathematical physics.

We propose the following method to compute u. First, perform m steps of the Lanczos method with A and φ. Define the spectral Lanczos decomposition method (SLDM) solution as um = φ Qf(H)e1, where Q is the n × m matrix of the m Lanczos vectors and H is the m × m tridiagonal symmetric matrix of the Lanczos method. We obtain estimates for uum that are stable in the presence of computer round-off errors when using the simple Lanczos method.

We concentrate on computation of exp(− tA)φ, when A is nonnegative definite. Error estimates for this special case show superconvergence of the SLDM solution. Sample computational results are given for the two-dimensional equation of heat conduction. These results show that computational costs are reduced by a factor between 3 and 90 compared to the most efficient explicit time-stepping schemes. Finally, we consider application of SLDM to hyperbolic and elliptic equations.  相似文献   


7.
The Lanczos method can be generalized to block form to compute multiple eigenvalues without the need of any deflation techniques. The block Lanczos method reduces a general sparse symmetric matrix to a block tridiagonal matrix via a Gram–Schmidt process. During the iterations of the block Lanczos method an off-diagonal block of the block tridiagonal matrix may become singular, implying that the new set of Lanczos vectors are linearly dependent on the previously generated vectors. Unlike the single vector Lanczos method, this occurrence of linearly dependent vectors may not imply an invariant subspace has been computed. This difficulty of a singular off-diagonal block is easily overcome in non-restarted block Lanczos methods, see [12,30]. The same schemes applied in non-restarted block Lanczos methods can also be applied in restarted block Lanczos methods. This allows the largest possible subspace to be built before restarting. However, in some cases a modification of the restart vectors is required or a singular block will continue to reoccur. In this paper we examine the different schemes mentioned in [12,30] for overcoming a singular block for the restarted block Lanczos methods, namely the restarted method reported in [12] and the Implicitly Restarted Block Lanczos (IRBL) method developed by Baglama et al. [3]. Numerical examples are presented to illustrate the different strategies discussed.  相似文献   

8.
Consider an operator equation G(u,λ) = 0 where λ is a real parameter. Suppose 0 is a “simple” eigenvalue of the Fréchet derivative Gu at (u0, λ0). We give a hierarchy of conditions which completely determines the solution structure of the operator equation. It will be shown that multiple bifurcation as well as simple bifurcation can occur. This extends the standard bifurcation theory from a simple eigenvalue in which only one branch bifurcates. We also discuss limit point bifurcations. Applications to semilinear elliptic equations and the homotopy method for the matrix eigenvalue problem are also given.  相似文献   

9.
The symmetric Lanczos method is commonly applied to reduce large‐scale symmetric linear discrete ill‐posed problems to small ones with a symmetric tridiagonal matrix. We investigate how quickly the nonnegative subdiagonal entries of this matrix decay to zero. Their fast decay to zero suggests that there is little benefit in expressing the solution of the discrete ill‐posed problems in terms of the eigenvectors of the matrix compared with using a basis of Lanczos vectors, which are cheaper to compute. Similarly, we show that the solution subspace determined by the LSQR method when applied to the solution of linear discrete ill‐posed problems with a nonsymmetric matrix often can be used instead of the solution subspace determined by the singular value decomposition without significant, if any, reduction of the quality of the computed solution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A rounding error analysis for the symplectic Lanczos method is given to solve the large-scale sparse Hamiltonian eigenvalue problem. If no breakdown occurs in the method, then it can be shown that the Hamiltonian structure preserving requirement does not destroy the essential feature of the nonsymmetric Lanczos algorithm. The relationship between the loss of J-orthogonality among the symplectic Lanczos vectors and the convergence of the Ritz values in the symmetric Lanczos algorithm is discussed. It is demonstrated that under certain assumptions the computed J-orthogonal Lanczos vectors lose the J-orthogonality when some Ritz values begin to converge. Our analysis closely follows the recent works of Bai and Fabbender. Selected from Journal of Mathematical Research and Exposition, 2004, 24(1): 91–106  相似文献   

11.
This work deals with various finite algorithms that solve two special Structured Inverse Eigenvalue Problems (SIEP). The first problem we consider is the Jacobi Inverse Eigenvalue Problem (JIEP): given some constraints on two sets of reals, find a Jacobi matrix J (real, symmetric, tridiagonal, with positive off-diagonal entries) that admits as spectrum and principal subspectrum the two given sets. Two classes of finite algorithms are considered. The polynomial algorithm which is based on a special Euclid–Sturm algorithm (Householder's terminology) and has been rediscovered several times. The matrix algorithm which is a symmetric Lanczos algorithm with a special initial vector. Some characterization of the matrix ensures the equivalence of the two algorithms in exact arithmetic. The results of the symmetric situation are extended to the nonsymmetric case. This is the second SIEP to be considered: the Tridiagonal Inverse Eigenvalue Problem (TIEP). Possible breakdowns may occur in the polynomial algorithm as it may happen with the nonsymmetric Lanczos algorithm. The connection between the two algorithms exhibits a similarity transformation from the classical Frobenius companion matrix to the tridiagonal matrix. This result is used to illustrate the fact that, when computing the eigenvalues of a matrix, the nonsymmetric Lanczos algorithm may lead to a slow convergence, even for a symmetric matrix, since an outer eigenvalue of the tridiagonal matrix of order n − 1 can be arbitrarily far from the spectrum of the original matrix. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
The global Arnoldi method can be used to compute exterior eigenpairs of a large non-Hermitian matrix A, but it does not work well for interior eigenvalue problems. Based on the global Arnoldi process that generates an F-orthonormal basis of a matrix Krylov subspace, we propose a global harmonic Arnoldi method for computing certain harmonic F-Ritz pairs that are used to approximate some interior eigenpairs. We propose computing the F-Rayleigh quotients of the large non-Hermitian matrix with respect to harmonic F-Ritz vectors and taking them as new approximate eigenvalues. They are better and more reliable than the harmonic F-Ritz values. The global harmonic Arnoldi method inherits convergence properties of the harmonic Arnoldi method applied to a larger matrix whose distinct eigenvalues are the same as those of the original given matrix. Some properties of the harmonic F-Ritz vectors are presented. As an application, assuming that A is diagonalizable, we show that the global harmonic Arnoldi method is able to solve multiple eigenvalue problems both in theory and in practice. To be practical, we develop an implicitly restarted global harmonic Arnoldi algorithm with certain harmonic F-shifts suggested. In particular, this algorithm can be adaptively used to solve multiple eigenvalue problems. Numerical experiments show that the algorithm is efficient for the eigenproblem and is reliable for quite ill-conditioned multiple eigenproblems.  相似文献   

13.
Oleg Kirillov 《PAMM》2003,2(1):92-93
Eigenvalue problems for non‐selfadjoint linear differential operators smoothly dependent on a vector of real parameters are considered. Bifurcation of eigenvalues along smooth curves in the parameter space is studied. The case of a multiple eigenvalue with the Keldysh chain of arbitrary length is investigated. Explicit expressions describing bifurcation of eigenvalues are found. The obtained formulae use eigenfunctions and associated functions of the adjoint eigenvalue problems as well as the derivatives of the differential operator taken at the initial point of the parameter space. These results are important for the stability theory and sensitivity analysis of non‐conservative systems. Mechanical examples are considered and discussed in detail.  相似文献   

14.
Algorithms to solve large sparse eigenvalue problems are considered. A new class of algorithms which is based on rational functions of the matrix is described. The Lanczos method, the Arnoldi method, the spectral transformation Lanczos method, and Rayleigh quotient iteration all are special cases, but there are also new algorithms which correspond to rational functions with several poles. In the simplest case a basis of a rational Krylov subspace is found in which the matrix eigenvalue problem is formulated as a linear matrix pencil with a pair of Hessenberg matrices.  相似文献   

15.
Homotopy algorithm for symmetric eigenvalue problems   总被引:1,自引:0,他引:1  
Summary The homotopy method can be used to solve eigenvalue-eigenvector problems. The purpose of this paper is to report the numerical experience of the homotopy method of computing eigenpairs for real symmetric tridiagonal matrices together with a couple of new theoretical results. In practice, it is rerely of any interest to compute all the eigenvalues. The homotopy method, having the order preserving property, can provide any specific eigenvalue without calculating any other eigenvalues. Besides this advantage, we note that the homotopy algorithm is to a large degree a parallel algorithm. Numerical experimentation shows that the homotopy method can be very efficient especially for graded matrices.Research was supported in part by NSF under Grant DMS-8701349  相似文献   

16.
Because of its vital role of the trust-region subproblem (TRS) in various applications, for example, in optimization and in ill-posed problems, there are several factorization-free algorithms for solving the large-scale sparse TRS. The truncated Lanczos approach proposed by N. I. M. Gould, S. Lucidi, M. Roma, and P. L. Toint [SIAM J. Optim., 1999, 9: 504–525] is a natural extension of the classical Lanczos method for the symmetric linear system and eigenvalue problem and, indeed follows the classical Rayleigh-Ritz procedure for eigenvalue computations. It consists of 1) projecting the original TRS to the Krylov subspaces to yield smaller size TRS’s and then 2) solving the resulted TRS’s to get the approximates of the original TRS. This paper presents a posterior error bounds for both the global optimal value and the optimal solution between the original TRS and their projected counterparts. Our error bounds mainly rely on the factors from the Lanczos process as well as the data of the original TRS and, could be helpful in designing certain stopping criteria for the truncated Lanczos approach.  相似文献   

17.
In this note we study a variant of the inverted Lanczos method which computes eigenvalue approximates of a symmetric matrix A as Ritz values of A from a Krylov space of A –1. The method turns out to be slightly faster than the Lanczos method at least as long as reorthogonalization is not required. The method is applied to the problem of determining the smallest eigenvalue of a symmetric Toeplitz matrix. It is accelerated taking advantage of symmetry properties of the correspond ng eigenvector.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

18.
The Tikhonov method is a famous technique for regularizing ill-posed linear problems, wherein a regularization parameter needs to be determined. This article, based on an invariant-manifold method, presents an adaptive Tikhonov method to solve ill-posed linear algebraic problems. The new method consists in building a numerical minimizing vector sequence that remains on an invariant manifold, and then the Tikhonov parameter can be optimally computed at each iteration by minimizing a proper merit function. In the optimal vector method (OVM) three concepts of optimal vector, slow manifold and Hopf bifurcation are introduced. Numerical illustrations on well known ill-posed linear problems point out the computational efficiency and accuracy of the present OVM as compared with classical ones.  相似文献   

19.
In this paper we consider the problem of estimating the largest eigenvalue and the corresponding eigenvector of a symmetric matrix. In particular, we consider iterative methods, such as the power method and the Lanczos method. These methods need a starting vector which is usually chosen randomly. We analyze the behavior of these methods when the initial vector is chosen with uniform distribution over the unitn-dimensional sphere. We extend and generalize the results reported earlier. In particular, we give upper and lower bounds on the pnorm of the randomized error, and we improve previously known bounds with a detailed analysis of the role of the multiplicity of the largest eigenvalue.  相似文献   

20.
Primal-dual pairs of semidefinite programs provide a general framework for the theory and algorithms for the trust region subproblem (TRS). This latter problem consists in minimizing a general quadratic function subject to a convex quadratic constraint and, therefore, it is a generalization of the minimum eigenvalue problem. The importance of (TRS) is due to the fact that it provides the step in trust region minimization algorithms. The semidefinite framework is studied as an interesting instance of semidefinite programming as well as a tool for viewing known algorithms and deriving new algorithms for (TRS). In particular, a dual simplex type method is studied that solves (TRS) as a parametric eigenvalue problem. This method uses the Lanczos algorithm for the smallest eigenvalue as a black box. Therefore, the essential cost of the algorithm is the matrix-vector multiplication and, thus, sparsity can be exploited. A primal simplex type method provides steps for the so-called hard case. Extensive numerical tests for large sparse problems are discussed. These tests show that the cost of the algorithm is 1 +α(n) times the cost of finding a minimum eigenvalue using the Lanczos algorithm, where 0<α(n)<1 is a fraction which decreases as the dimension increases. Research supported by the National Science and Engineering Research Council Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号