首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We performed a spin polarized density-function theory study of the stabilities, electronic and magnetic properties of zigzag silicene nanoribbons (ZSiNRs) substitutionally doped with a single N or B atom located at various sites ranging from edge to center of the ribbon. From minimization of the formation energy, it is found that the substitutional doping is favorable at edge of the ribbon. A single N or B atom substitution one edge Si atom of ZSiNRs can greatly suppress the spin-polarizations of the impurity atom site and its vicinity region, and leads to a transition from antiferromagnetic (AFM) state to ferromagnetic (FM) state, which is attributed to the splitting of the original spin degenerate edge bands. A single N atom doped ZSiNRs still keep semiconductor property but a single B atom doped ZSiNRs exhibit a half-metallic character. Our results reveal that substitution doped ZSiNRs have potential applications in Si-based nanoelectronics, such as field effect transisitors (FETs), negative differential resistance (NDR) and spin filter (SF) devices.  相似文献   

2.
The buckled structure of silicene provides a feasible pathway to influence its electric and magnetic properties via surface adsorptions. Here, we investigate the magnetic and spin thermoelectric transport properties of dual-hydrogenated zigzag silicene nanoribbons (ZSiNRs) without/with the hydrogen adsorption. The band gaps for two spin channels in ZSiNRs under the hydrogen adsorption are shifted near the Fermi level, leading to the appearance of spin Seebeck effect. Using a temperature difference, one can derive the carriers with the different spin index to flow in the opposite direction. Moreover, a large rectification ratio close to 105 at room temperature is achieved for the spin current, and the charge current exhibits a remarkable negative differential thermoelectric resistance (NDTR) behavior. The results presented here are fascinating potential applications in the fields of silicon-based spin caloritronic devices.  相似文献   

3.
This work reviews our recent works about the density functional theory(DFT) calculational aspects of electronic properties in silicene-based nanostructures with the modulation of external fields, such as electric field, strain, etc. For the two-dimensional(2D) silicene-based nonostructures, the magnetic moment of Fe-doped silicene shows a sharp jump at a threshold electric field, which indicates a good switching effect, implying potential applications as a magnetoelectric(ME) diode. With the electric field, the good controllability and sharp switching of the magnetism may offer a potential applications in the ME devices. For the one-dimensional(1D) nanostructures, the silicene nanoribbons with sawtooth edges(SSi NRs) are more stable than the zigzag silicene nanoribbons(ZSiNRs) and show spin-semiconducting features. Under external electric field or uniaxial compressive strain, the gapless spin-semiconductors are gained, which is significant in designing qubits for quantum computing in spintronics. The superlattice structures of silicene-based armchair nanoribbons(ASiSLs) is another example for 1D silicene nanostructures. The band structures of ASi SLs can be modulated by the size and strain of the superlattices. With the stain increased, the related energy gaps of ASi SLs will change, which are significantly different with that of the constituent nanoribbons. The results suggest potential applications in designing quantum wells.  相似文献   

4.
The structural and electronic properties of zigzag edge silicene nanoribbons (ZSiNRs) doped with a single C chain have been studied by first-principles projector augmented wave (PAW) potential within the density function theory (DFT) framework. The results show that the C chain is almost close to a straight one which results in a transverse contraction near C chain and thus the ribbon width. The C–Si and Si–H bonds are typical ionic bonds while the C–H bond is a covalence bond. ZSiNRs doped with a single C chain are all metallic independent of the position of the C chain. All these results have been explained satisfactory from the electronegativity difference and the bound force to the electrons because of the atom radius difference between the elements.  相似文献   

5.
To investigate charge and spin dependent conductance properties of Phosphorus doped zigzag silicene nanoribbons (ZSiNRs), we utilize recursive Green's function method and Landauer-Büttiker formalism. Our calculations are performed in the absence and presence of exchange magnetic fields with both parallel and antiparallel configurations. Considering a supperlattice of Phosphorus substituents in a periodic distribution at the edge of nanoribbon, the effect of increasing number of dopants and period of the distribution on transport properties are studied. It is found that transport properties of doped ZSiNRs vary with doping concentration according to being odd or even of number of dopants. For parallel configuration, doped ZSiNR with various concentrations works as a controllable spin filter with Fermi energy. Increasing doping concentration leads to increasing size of conductance gap and improvement of controlling quality of spin-filtering property while increasing period of Phosphorus atomic distribution has destructive effect on size of conductance gap and destroys spin-filtering property. Moreover, we show that although the same results are obtained for transport properties of doped ZSiNR with various concentrations of Phosphorus atoms in presence of antiparallel exchange magnetic fields, a completely controllable spin-filtering property cannot be achieved by Fermi energy changes.  相似文献   

6.
Silicene-the silicon-based counterpart of graphene-has a two dimensional structure that is responsible for the variety of potentially useful chemical and physical properties. The existence of silicene has been achieved recently owing to experiments involving epitaxial growth of silicon as stripes on Ag(001), ribbons on Ag(110), and sheets on Ag(111). The nano-ribbons observed on Ag(110) were found-by both high definition experimental scanning tunneling microscopy images and density functional theory calculations-to consist of an arched honeycomb structure. Angle resolved photo-emission experiments on these silicene nano-ribbons on Ag(110), along the direction of the ribbons, showed a band structure which is analogous to the Dirac cones of graphene. Unlike silicon surfaces, which are highly reactive to oxygen, the silicene nano-ribbons were found to be resistant to oxygen reactivity.On the theoretical side, recent extensive efforts have been deployed to understand the properties of standalone silicene sheets and nano-ribbons using both tight-binding and density functional theory calculations. Unlike graphene it is demonstrated that silicene sheets are stable only if a small buckling (0.44 Å) is present. The electronic properties of silicene nano-ribbons and silicene sheets were found to resemble those of graphene.Although this is a fairly new avenue, the already obtained outcome from these important first steps in understanding silicene showed promising features that could give a new future to silicon in the electronics industry, thus opening a promising route toward wide-range applications. In this review, we plan to introduce silicene by presenting the available experimental and theoretical studies performed to date, and suggest future directions to be explored to make the synthesis of silicene a viable one.  相似文献   

7.
Using density functional theory (DFT) with both the generalized gradient approximation (GGA) and hybrid functionals, we have investigated the structural, electronic and magnetic properties of a two-dimensional hydrogenated silicon-based material. The compounds, i.e. silicene, full- and half-hydrogenated silicene, are studied and their properties are compared. Our results suggest that silicene is a gapless semimetal. The coverage and arrangement of the absorbed hydrogen atoms on silicene influence significantly the characteristics of the resulting band structures, such as the direct/indirect band gaps or metallic/semiconducting features. Moreover, it is interesting to see that half-hydrogenated silicene with chair-like structure is shown to be a ferromagnetic semiconductor.  相似文献   

8.
Mechanical properties and stability of two layers of defect silicene supported by graphene sheets, between which the lithium ion passes under an electrostatic field, are studied by the molecular dynamics method. Defects are mono-, di-, tri-, and hexavacansies. Graphene and silicene edges are rigidly fixed. Graphene sheets contacting with silicene take a convex shape, deflecting outward. Mono- and divacancies in silicene tend to a size decrease; larger vacancies exhibit better stability. The ion motion control using an electric field becomes possible only using perfect silicene or silicene with mono- and divacancies. The ion penetrated through larger defects, and its motion in the silicene channel becomes uncontrolled. When the ion moves in the channel, the most strong stress spikes appear in silicene containing monovacancies. In the case of fixed edges, perfect silicene intercalated with a lithium ion is inclined to accumulate larger stresses than silicene containing defects.  相似文献   

9.
双空位缺陷石墨纳米带的电子结构和输运性质研究   总被引:1,自引:0,他引:1       下载免费PDF全文
欧阳方平  徐慧  林峰 《物理学报》2009,58(6):4132-4136
基于第一原理电子结构和输运性质计算,研究了585双空位拓扑缺陷对锯齿(zigzag)型石墨纳米带(具有椅型(armchair)边)电子结构和输运性质的影响.研究发现,585双空位缺陷的存在使得锯齿型石墨纳米带的能隙增大,并在能隙中出现了一条局域于缺陷处的缺陷态能带,双空位缺陷的取向也影响其能带结构.另外,585双空位缺陷对能隙较小的锯齿型石墨纳米带输运性质的影响较大,而对能隙较大的锯齿型石墨纳米带影响很小,缺陷取向并不显著影响纳米带的输运性质. 关键词: 石墨纳米带 585空位缺陷 电子结构 输运性质  相似文献   

10.
Electronic properties and STM topographical images of X (=F, H, O) functionalized silicene and germanene have been investigated by introducing various kind of vacancy clusters and chain patterns in monolayers within density functional theory (DFT) framework. The relative ease of formation of vacancy clusters and chain patterns is found to be energetically most favorable in hydrogenated silicene and germanene. F- and H-functionalized silicene and germanene are direct bandgap semiconducting with bandgap ranging between 0.1–1.9 eV, while O-functionalized monolayers are metallic in nature. By introducing various vacancy clusters and chain patterns in both silicene and germanene, the electronic and magnetic properties get modified in significant manner e.g. F- and H-functionalized silicene and germanene with hexagonal and rectangle vacancy clusters are non-magnetic semiconductors with modified bandgap values while pentagonal and triangle vacancy clusters induce metallicity and magnetic character in monolayers; hexagonal vacancy chain patterns induce direct-to-indirect gap transition while zigzag vacancy chain patterns retain direct bandgap nature of monolayers. Calculated STM topographical images show distinctly different characteristics for various type of vacancy clusters and chain patterns which may be used as electronic fingerprints to identify various vacancy patterns in silicene and germanene created during the process of functionalization.  相似文献   

11.
By using density functional theory(DFT)-based first-principles calculations, the structural stability and electronic properties for two kinds of silicene domain boundaries, forming along armchair edge and zigzag edge, have been investigated. The results indicate that a linkage of tetragonal and octagonal rings(4|8) appears along the armchair edge, while a linkage of paired pentagonal and octagonal rings(5|5|8) appears along the zigzag edge. Different from graphene, the buckling properties of silicene lead to two mirror symmetrical edges of silicene line-defect. The formation energies indicate that the 5|5|8 domain boundary is more stable than the 4|8 domain boundary. Similar to graphene, the calculated electronic properties show that the 5|5|8 domain boundaries exhibit metallic properties and the 4|8 domain boundaries are half-metal.Both domain boundaries create the perfect one-dimensional(1D) metallic wires. Due to the metallic properties, these two kinds of nanowires can be used to build the silicene-based devices.  相似文献   

12.
Silicene, a monolayer of silicon atoms arranged in a honeycomb lattice, has been undergoing rapid development in recent years due to its superior electronic properties and its compatibility with mature silicon-based semiconductor technology. The successful synthesis of silicene on several substrates provides a solid foundation for the use of silicene in future microelectronic devices. In this review, we discuss the growth mechanism of silicene on an Ag(111) surface, which is crucial for achieving high quality silicene. Several critical issues related to the electronic properties of silicene are also summarized, including the point defect effect, substrate effect, intercalation of alkali metal, and alloying with transition metals.  相似文献   

13.
In this work, we performed first principles calculations based on self-consistent charge density functional tight-binding to investigate different mechanisms of band gap tuning of silicene. We optimized structures of silicene sheet, functionalized silicene with H, CH3 and F groups and nanoribbons with the edge of zigzag and armchair. Then we calculated electronic properties of silicene, functionalized silicene under uniaxial elastic strain, silicene nanoribbons and silicene under external electrical fields. It is found that the bond length and buckling value for relaxed silicene is agreeable with experimental and other theoretical values. Our results show that the band gap opens by functionalization of silicene. Also, we found that the direct band gap at K point for silicene changed to the direct band gap at the gamma point. Also, the functionalized silicene band gap decrease with increasing of the strain. For all sizes of the zigzag silicene nanoribbons, the band gap is near zero, while an oscillating decay occurs for the band gap of the armchair nanoribbons with increasing the nanoribbons width. At finally, it can be seen that the external electric field can open the band gap of silicene. We found that by increasing the electric field magnitude the band gap increases.  相似文献   

14.
Free standing silicene is a two-dimensional silicon monolayer with a buckled honeycomb lattice and a Dirac band structure. Ever since its first successful synthesis in the laboratory, silicene has been considered as an option for post-silicon electronics, as an alternative to graphene and other two-dimensional materials. Despite its theoretical high carrier mobility,the zero band gap characteristic makes pure silicene impossible to use directly as a field effect transistor(FET) operating at room temperature. Here, we first review the theoretical approaches to open a band gap in silicene without diminishing its excellent electronic properties and the corresponding simulations of silicene transistors based on an opened band gap.An all-metallic silicene FET without an opened band gap is also introduced. The two chief obstacles for realization of a silicene transistor are silicene's strong interaction with a metal template and its instability in air. In the final part, we briefly describe a recent experimental advance in fabrication of a proof-of-concept silicene device with Dirac ambipolar charge transport resembling a graphene FET, fabricated via a growth-transfer technique.  相似文献   

15.
由于低维材料表面上的单原子和分子具有丰富的物理化学性质,现已经成为量子器件及催化科学等领域的研究热点.单层硅烯在不同的衬底制备温度下,表现出丰富的超结构,这些超结构为实现有序的单原子或分子吸附提供了可靠的模板.利用原位硅烯薄膜制备,分子沉积,超高真空扫描隧道显微镜以及扫描隧道谱,本文研究了Ag(111)衬底上3种硅烯超结构((4×4),(■×■),(2■×2■))的电子态结构,表面功函数随超结构的变化,以及CoPc分子在这3种超结构硅烯上的吸附行为.研究结果表明,这3种超结构的硅烯具有类似的电子能带结构,且存在电子从Ag(111)衬底转移到硅烯上的可能性,从而导致硅烯的表面功函数增大,表面功函数在原子级尺度上的变化对分子的选择性吸附起着重要作用.此外,还观察到分子与硅烯的相互作用导致CoPc分子的电子结构发生对称性破缺.  相似文献   

16.
硅烯是单原子层的硅薄膜,具有类石墨烯结构.因此拥有与石墨烯相似的各种奇特的热学、化学、光学和电学性质.近年来,硅烯引起了研究者的广泛关注,作为一种新型的二维狄拉克电子材料,硅烯在理论计算和实验上都取得了不少新的进展.本文主要在前人对硅烯实施边缘钝化、掺杂、外加电场、加应力或者表面官能团修饰和吸附等研究的情况下,结合当前硅烯的研究发展趋势,重点研究了不同掺杂对硅烯性质的影响,并探讨硅烯在未来硅基电子器件的应用前景.  相似文献   

17.
Using first-principles calculations, we predicted hexagonal boron nitride (h-BN) with flat surface is an ideal substrate for silicene. Van der Waals interactions hold silicene and h-BN together, forming silicene/BN moiré superstructures. The moiré superstructures open a band gap of about 30 meV at the Dirac point of silicene at equilibrium distance. The band gap is almost independent of the rotation angle between the two lattices, but can be effectively tuned by changing the interlayer spacing. The high Fermi velocity of silicene is well preserved in these superstructures. These features are helpful in achieving applications of silicene in nanoscale electronic devices.  相似文献   

18.
Under the generalized gradient approximation (GGA), the structural and electronic properties are studied for H-terminated silicene nanoribbons (SiNRs) with either zigzag edge (ZSiNRs) or armchair edge (ASiNRs) by using the first-principles projector-augmented wave potential within the density function theory (DFT) framework. The results show that the length of the Si-H bond is always 1.50 Å, but the edge Si-Si bonds are shorter than the inner ones with identical orientation, implying a contraction relaxation of edge Si atoms. An edge state appears at the Fermi level EF in broader ZSiNRs, but does not appear in all ASiNRs due to their dimer Si-Si bond at edge. With increasing width of ASiNRs, the direct band gaps exhibit not only an oscillation behavior, but also a periodic feature of Δ3n > Δ3n+1 > Δ3n+2 for a certain integer n. The charge density contours analysis shows that the Si-H bond is an ionic bond due to a relative larger electronegativity of H atom. However, all kinds of the Si-Si bonds display a typical covalent bonding feature, although their strength depends on not only the bond orientation but also the bond position. That is, the larger deviation of the Si-Si bond orientation from the nanoribbon axis as well as the closer of the Si-Si bond to the nanoribbon edge, the stronger strength of the Si-Si bond. Besides the contraction of the nanoribbon is mainly in its width direction especially near edge, the addition contribution from the terminated H atoms may be the other reason.  相似文献   

19.
The structural, electronic and dielectric properties of mono and bilayer buckled silicene sheets are investigated using density functional theory. A comparison of stabilities, electronic structure and effect of external electric field are investigated for AA and AB-stacked bilayer silicene. It has been found that there are no excitations of electrons i.e. plasmons at low energies for out-of-plane polarization. While for AB-stacked bilayer silicene 1.48 eV plasmons for in-plane polarization is found, a lower value compared to 2.16 eV plasmons for monolayer silicene. Inter-band transitions and plasmons in both bilayer and monolayer silicene are found relatively at lower energies than graphene. The calculations suggest that the band gap can be opened up and varied over a wide range by applying external electric field for bilayer silicene. In infra-red region imaginary part of dielectric function for AB-stacked buckled bilayer silicene shows a broad structure peak in the range of 75–270 meV compared to a short structure peak at 70 meV for monolayer silicene and no structure peaks for AA-stacked bilayer silicene. On application of external electric field the peaks are found to be blue-shifted in infra-red region. With the help of imaginary part of dielectric function and electron energy loss function effort has been made to understand possible interband transitions in both buckled bilayer silicene and monolayer silicene.  相似文献   

20.
Silicene is a promising 2D Dirac material as a building block for van der Waals heterostructures(vd WHs). Here we investigate the electronic properties of hexagonal boron nitride/silicene(BN/Si) vd WHs using first-principles calculations.We calculate the energy band structures of BN/Si/BN heterostructures with different rotation angles and find that the electronic properties of silicene are retained and protected robustly by the BN layers. In BN/Si/BN/Si/BN heterostructure, we find that the band structure near the Fermi energy is sensitive to the stacking configurations of the silicene layers due to interlayer coupling. The coupling is reduced by increasing the number of BN layers between the silicene layers and becomes negligible in BN/Si/(BN)_3/Si/BN. In(BN)_n/Si superlattices, the band structure undergoes a conversion from Dirac lines to Dirac points by increasing the number of BN layers between the silicene layers. Calculations of silicene sandwiched by other 2D materials reveal that silicene sandwiched by low-carbon-doped boron nitride or HfO_2 is semiconducting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号