首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The construction of effective models for materials that undergo martensitic phase transformations requires usable and accurate functional representations for the free energy density. The general representation of this energy is known to be highly non-convex; it even lacks the property of quasi-convexity. A quasi-convex relaxation, however, does permit one to make certain estimates and powerful conclusions regarding phase transformation. The general expression for the relaxed free energy is however not known in the n-variant case. Analytic solutions are known only for up to 3 variants, whereas cases of practical interests involve 7-13 variants. In this study we examine the n-variant case utilizing relaxation theory and produce a seemingly obvious but very powerful observation regarding a lower bound to the quasi-convex relaxation that makes practical evolutionary computations possible. We also examine in detail the 4-variant case where we explicitly show the relation between three different forms of the free energy of mixing: upper bound by lamination, the Reuß lower bound, and a lower estimate of the -measure bound. A discussion of the bounds and their utility is provided; sample computations are presented for illustrative purposes.  相似文献   

2.
The subharmonic bifurcation and universal unfolding problems are discussed for an arch structure with parametric and forced excitation in this paper. The amplitude–frequency curve and some dynamical behavior have been shown for this class of problems by Liu et al. Here, by means of singularity theory, in the case of strict 1:2 internal resonance, the bifurcation behavior of the amplitude with respect to a parameter (which is related to the amplitude of the live load imposed on the arch structures) is studied. The results indicate that it is a high codimensional bifurcation problem with codimension 5, and the universal unfolding is given. From the mechanical background, 20 forms of two parameter unfoldings with some constraints are studied. The transition sets in the parameter plane and the bifurcation diagrams are plotted. The results obtained in this paper present some new dynamic buckling patterns and abundant bifurcation phenomena.  相似文献   

3.
Monte Carlo technique is constituted of three steps. Therefore, improving such technique in practice means, improving the procedure used in one of the three following steps: (i) sample paths of the stochastic input process, (ii) calculation of the outputs corresponding to the generated input samples by using methods of classical dynamics and (iii) estimating statistics of the output process from sample outputs related to the previous step. For linear and non-linear systems driven by parametric impulsive inputs such as normal or non-normal white noises, a general integration method requires a considerable reduction of the integration step when the impulse occurs, treating the impulse as a physical one, by means of a window function of finite duration. This makes Monte Carlo simulation very prohibitive from a computational time point of view. While knowing the exact jump value of the response at impulse occurring that is expressed by a numerical series, the aforementioned problem is overcome because there is no need to reduce the integration step saving computational time, reliability being equal as shown by means of a numerical example.  相似文献   

4.
This paper presents numerical investigations on the loading and unloading of a three-dimensional body in frictional contact with a rigid foundation. The evolution of the sliding process during loading/unloading cycles is analyzed. The important case of anisotropy is examined along with the effect of the sliding rule. The solution algorithm is based on a variational inequality which combine the contact problem and the frictional problem. The numerical results of the punch problem show the hysteretic and irreversible behavior occurring when friction is anisotropic.  相似文献   

5.
The effect of an isolated submarine obstacle on the motion of fluid particles in a periodic external flow is studied within the framework of the barotropic, quasi-geostrophic approximation on f-plane. The concept of background currents advanced by Kozlov [1995. Background currents in geophysical hydrodynamics. Izvestia, Atmos. Oceanic Phys. 31 (2), 245-250] is used to construct a dynamically consistent stream function satisfying the potential vorticity conservation law. It is shown that a system of two topographic vortices revolving about a rotation center can form in a circular external flow. Unsteady periodic perturbations, associated with either variations in the background current or deviations of the external flow from circulation, are analyzed. Unsteadiness in the external flow essentially complicates the pattern of the motion of fluid particles. Vortex-type quasi-periodic structures, identified with nonlinear resonances that form in Lagrangian equations of fluid particle advection, are examined. They either surround the stationary configuration by a vortex chain—a ringlet-like structure [Kennelly, M.A., Evans, R.H., Joyce, T.M., 1985. Small-scale cyclones on the periphery of Gulf Stream warm-core rings. J. Geophys. Res. 90(5), 8845-8857], or they form a complex-structure multivortex domain. Asymptotic estimates and numerical modeling are used to study the distribution and widths of the nonlinear resonance domains that appear under unsteady perturbations of different types. The onset of chaotic regimes owing to the overlapping of nonlinear resonance domains is analyzed. Transport fluxes determined by chaotic advection and barriers for transport (KAM-tori) and the conditions of their existence are studied. The relation of the rotation frequency of fluid particles on their initial position (when the dependence is calculated in the undisturbed system) is shown to completely determine the main features of the pattern of Lagrangian trajectories and chaotization effects. Because of nonlinear effects, the domain involved in quasi-periodic and chaotic motions can be much larger than the domain occupied by steady topographic vortices. The results of study by Sokolovskiy et al. [1988. On the influence of an isolated submerged obstacle on a barotropic tidal flow. Geophys. Astrophys. Fluid Dyn. 88(1), 1-30] concerning the due regard on the irrotational background component as the necessary factor for the transportation of fluid particles from the vortex domain to infinity are confirmed.  相似文献   

6.
7.
A theoretical analysis of fractional anomalous diffusion caused by an instantaneous point source in disordered fractal media is studied. Using the method of symmetry group of scaling transformations and the H-function, the analytical solutions of concentration distribution are given. At the same time we derive the expressions of scattering function spectrum.The result shows that the scattering function spectra still have the properties of scaling function. The scattering functions of point source, line source and area source in regular Euclidean space can be regarded as particular cases of this paper and are included in this paper. At the end of the paper we discuss the asymptotic behaviors of the solution in detail. The results of this paper can be taken to be the fundamental solutions for every kind of boundary value problems of fractional anomalous diffusion in disordered fractal media.  相似文献   

8.
The authors develop a numerical procedure to analyze the adhesive contact between a soft elastic layer and a rough rigid substrate. The solution of the problem, which belongs to the class of the free boundary problems, is obtained by calculating the Green's function which links the pressure distribution to the normal displacements at the interface. The problem is then formulated in the form of a Fredholm integral equation of the first kind with a logarithmic kernel, and the boundaries of the contact area are calculated by requiring that the energy of the system is stationary. The methodology is relatively simple and easy to implement in a numerical code. It has been utilized to analyze the adhesive properties of a confined layer in contact with a wavy rigid substrate as a function of thickness, applied stress or penetration. It is shown that reducing the thickness of the slab reduces the effective energy of adhesion, i.e. the work needed to separate the bodies, but nevertheless increases the adherence force between the slab and the substrate. However, thinning the slab also increases the confinement of the system and therefore increases the negative hydrostatic pressure in the layer. This, in turn, may produce cavitation. When this happens the rupture of the adhesive bond does not occur through interfacial crack propagation but, by the growth of new interfacial voids or cavities.  相似文献   

9.
The aim of this presentation is the development of a general approach for modelling the global complex energy landscapes of phase transitions. For the sake of clarity and brevity the exposition is restricted to martensitic phase transition (i.e., diffusionless phase transitions in crystalline solids). The methods, however, are more broadly applicable. Explicit energy functions are derived for the cubic-to-tetragonal phase transition, where data are fitted for InTl. Another example is given for the cubic-to-monoclinic transition in CuZnAl. The resulting energies are defined globally, in a piecewise manner. We use splines that are twice continuously differentiable to ensure sufficient smoothness. The modular (piecewise) technique advocated here allows for modelling elastic moduli, energy barriers and other characteristics independent of each other.  相似文献   

10.
The acceleration form of constraint equations is utilized in this paper to solve for the inverse dynamics of servo-constraints. A condition for the existence of control forces that enforce servo-constraints is derived. For overactuated dynamical systems, the generalized Moore-Penrose inverse of the constraint matrix is used to parameterize the solutions for these control forces in terms of free parameters that can be chosen to satisfy certain requirements or optimize certain criterions. In particular, these free parameters can be chosen to minimize the Gibbsian (i.e., the acceleration energy of the dynamical system), resulting in ideal control forces (those satisfying the principle of virtual work when the virtual displacements satisfy the servo-constraint equations). To achieve this, the nonminimal nonholonomic form recently derived by the authors in the context of Kanes method is used to determine the accelerations of the system, and hence to determine the forces to be generated by the redundant manipulators. Finally, an extension to inverse dynamics of servo-constraints involving control variables is made. The procedures are illustrated by two examples.  相似文献   

11.
We propose an approach to perform orbital-free density functional theory calculations in a non-periodic setting using the finite-element method. We consider this a step towards constructing a seamless multi-scale approach for studying defects like vacancies, dislocations and cracks that require quantum mechanical resolution at the core and are sensitive to long range continuum stresses. In this paper, we describe a local real-space variational formulation for orbital-free density functional theory, including the electrostatic terms and prove existence results. We prove the convergence of the finite-element approximation including numerical quadratures for our variational formulation. Finally, we demonstrate our method using examples.  相似文献   

12.
We present a real-space, non-periodic, finite-element formulation for Kohn-Sham density functional theory (KS-DFT). We transform the original variational problem into a local saddle-point problem, and show its well-posedness by proving the existence of minimizers. Further, we prove the convergence of finite-element approximations including numerical quadratures. Based on domain decomposition, we develop a parallel finite-element implementation of this formulation capable of performing both all-electron and pseudopotential calculations. We assess the accuracy of the formulation through selected test cases and demonstrate good agreement with the literature. We also evaluate the numerical performance of the implementation with regard to its scalability and convergence rates. We view this work as a step towards developing a method that can accurately study defects like vacancies, dislocations and crack tips using density functional theory (DFT) at reasonable computational cost by retaining electronic resolution where it is necessary and seamlessly coarse-graining far away.  相似文献   

13.
Based on the classical harmonic balance method a new technique is presented to determine higher approximate periodic solutions of the non-linear differential equations. The new method is systematic and simple. The solution covers the general initial value problem (i.e., for while the existing solution is determined for a particular case, especially for . The solution is easily transformed to perturbation solution. The method is used in various non-linear problems possessing second and more than second derivatives.  相似文献   

14.
An analysis is made of the steady two-dimensional stagnation-point flow of an incompressible viscoelastic fluid over a flat deformable surface when the surface is stretched in its own plane with a velocity cx, where x is the distance from the stagnation-point and c is a positive constant. It is shown that for a viscoelastic fluid of short memory (obeying Walters’ B model), a boundary layer is formed when the stretching velocity of the surface is less than ax, where ax+2by is the inviscid free-stream velocity and y is the distance normal to the plate, a and b being constants and the velocity at a point increases with increase in the elasticity of the fluid. On the other hand an inverted boundary layer is formed when the surface stretching velocity exceeds ax and the velocity decreases with increase in the elasticity of the fluid. A novel result of the analysis is that the flow near the stretching surface is that corresponding to an inviscid stagnation-point flow when a=c. Temperature distribution in the boundary layer is found in three cases, namely: (i) the sheet with constant surface temperature (CST); (ii) the sheet with variable surface temperature (VST) and (iii) the sheet with prescribed quadratic power law surface heat flux (PHF) for various values of non-dimensional parameters. It is found that in all the three cases when a/c>1, temperature at a point decreases with increase in the elasticity of the fluid and when a/c<1, temperature at a point increases with increase in the elasticity of the fluid. Further temperature at a point decreases with increase in the radiation parameter and wall temperature parameter.  相似文献   

15.
Exploring a recently developed mesoscale continuum theory of dislocation dynamics, we derive three predictions about plasticity and grain boundary formation in crystals. (1) There is a residual stress jump across grain boundaries and plasticity-induced cell walls as they form, which self-consistently acts to attract neighboring dislocations; residual stress in this theory appears as a remnant of the driving force behind wall formation under both polygonization and plastic deformation. We derive the predicted asymptotic late-time dynamics of the grain-boundary formation process. (2) During grain boundary formation at high temperatures, there is a predicted cusp in the elastic energy density. (3) In early stages of plasticity, when only one type of dislocation is active (single-slip), cell walls do not form in the theory; instead we predict the formation of a hitherto unrecognized jump singularity in the dislocation density.  相似文献   

16.
We examine the propagation of shocks and traveling wave phenomena on a one-dimensional string that is executing finite-amplitude, transverse vibrations in a resisting medium. As part of our study, we develop an approach that allows us to describe, albeit approximately, the evolution and propagation of a shock front using analytical methods. In addition, exact traveling wave solutions, one of which involves the Lambert W-function, of the string's equation of motion are determined and analyzed. Lastly, a possible new form of the solution to the linearized problem is presented and extensions and other applications of the present work are briefly discussed.  相似文献   

17.
18.
We study some rheological properties for polyamide-6 (PA-6) and a low concentrated clay nanocomposite melt based on polyamide-6 and montmorillonite. Simple shear experiments, carried out for both the neat system and nanocomposite at two different temperatures, include start up shear flows, stress relaxation after cessation of steady flow and oscillatory shear. The dynamic data for the neat PA-6 matrix differ markedly from that of the nanocomposite system, even if it has very low nanofiller concentration. Thermal stability of the PA-6 matrix imposed many restrictions on rheological studies of our systems. Therefore an experimental window was established via rheological and thermal characterization of the materials, wherein the polymer matrix was confirmed to be thermally stable. The relaxation spectra for both polymer systems were determined from linear dynamic experiments using the Pade-Laplace procedure. A rough estimation of nanocomposite volume fraction at percolation allowed us to attribute the occurrence of extra (relative to the neat polymer) Maxwell modes observed for the nanocomposite to the formation of a particulate network above the percolation threshold.  相似文献   

19.
This paper discusses boundary conditions appropriate to a theory of single-crystal plasticity (Gurtin, J. Mech. Phys. Solids 50 (2002) 5) that includes an accounting for the Burgers vector through energetic and dissipative dependences on the tensor G=curlHp, with Hp the plastic part in the additive decomposition of the displacement gradient into elastic and plastic parts. This theory results in a flow rule in the form of N coupled second-order partial differential equations for the slip-rates , and, consequently, requires higher-order boundary conditions. Motivated by the virtual-power principle in which the external power contains a boundary-integral linear in the slip-rates, hard-slip conditions in which
(A)
on a subsurface Shard of the boundary
for all slip systems α are proposed. In this paper we develop a theory that is consistent with that of (Gurtin, 2002), but that leads to an external power containing a boundary-integral linear in the tensor , a result that motivates replacing (A) with the microhard condition
(B)
on the subsurface Shard.
We show that, interestingly, (B) may be interpreted as the requirement that there be no flow of the Burgers vector across Shard.What is most important, we establish uniqueness for the underlying initial/boundary-value problem associated with (B); since the conditions (A) are generally stronger than the conditions (B), this result indicates lack of existence for problems based on (A). For that reason, the hard-slip conditions (A) would seem inappropriate as boundary conditions.Finally, we discuss conditions at a grain boundary based on the flow of the Burgers vector at and across the boundary surface.  相似文献   

20.
A semi-analytical procedure for obtaining stability conditions for strongly non-linear single degree of freedom system (SDOF) subjected to random excitations is presented using stochastic averaging technique. The method is useful for finding stability conditions for systems having highly irregular non-linear functions which cannot be integrated in closed form to yield analytical expressions for averaged drift and diffusion coefficients. In spite of numerical methods available for finding stability of SDOF system by determining Lyapunov exponent, the proposed technique may have to be adopted (i) when the excitation is non-white; and (ii) when numerical integration fails due to convergence problem. The method is developed in such a way that it lends itself to a numerical computational scheme using FFT for obtaining numerical values of drift and diffusion coefficients of Its differential equation and the corresponding FPK equation for the system. These values of averaged drift and diffusion coefficients are then fit into polynomial form using curve fitting technique so that polynomials can be used for stability analysis. Two example problems are solved as illustrations. The first one is the Van der Pol oscillator having non-linearities which can be treated purely analytically. The example is considered for the validation of the proposed method. The second one involves non-linearities in the form of signum function for which purely analytical solution is not possible. The results of the study show that the proposed method is useful and efficient for performing stability analysis of dynamic systems having any type of non-linearities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号