首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rheological properties of PA-6/EPM polymer blends, non-compatibilized and compatibilized with grafted ethylene propylene rubber (EPM-g-MA), have been investigated. Linear and non-linear (relaxation both in shear and extension) experiments were realized. Stress relaxation experiments coupled with scanning electron microscopy (SEM) analysis showed the existence of one relaxation time and non-deformed droplets for the immiscible blend, and two relaxation times and deformed droplets for the compatibilized ones, the second relaxation being more pronounced for higher compatibilizer contents. These results clearly indicate that, despite the high viscosity and elasticity ratios, if high amounts of compatibilizer are added to the blend, interfacial slip is suppressed and a high-enough adhesion between the phases is achieved for the high-viscosity dispersed phase to be deformed. Paper presented at the 3rd Annual European Rheology Conference, April 27–29, 2006, Crete, Greece  相似文献   

2.
In this study, three EVAs (ethylene-vinyl acetate co-polymers) with different vinyl contents (VA) ranging from 9 wt% to 28 wt% (EVA9, EVA18 and EVA28) were melt blended with organo-clay to obtain polymer layered silicate nanocomposites. Filler intercalation and exfoliation were evidenced by X-ray diffraction. The melt state viscoelastic properties of EVA nanocomposites were studied to examine the influence of clay in altering the flow properties of these polymeric nanocomposites. The EVA18 and EVA28 nanocomposites exhibited remarkable difference in dynamic and steady shear properties compared to neat polymers. On the other hand, EVA9-5% nanocomposite did not exfoliate and exhibited rheological behaviour very similar to that of the neat polymer. Furthermore, the first normal stress difference was found to be dependent on the silicate loadings when measured at low shear stresses. The uniaxial extensional viscosity measurement indicated that the strain hardening was weaker in EVA nanocomposites compared to neat polymers. Environmental scanning electron (ESE)-microscopy elucidated a possible reason for reduced strain hardening in these systems.  相似文献   

3.
In this work, the effect of multi-walled carbon nanotube (CNT) and montmorillonite nanoclay on polymer chain dynamics is investigated around the percolation concentration for systems based on ethylene vinyl acetate (EVA) copolymer. Then, the results obtained are compared with literature data to determine if, regardless of particle characteristics, a universal rheological behavior can be detected at percolation. To do so, rheological analyses are performed under small amplitude oscillatory shear (SAOS), large amplitude oscillatory shear (LAOS), and transient shear step. SAOS data showed that, while the dynamics related to the Rouse relaxation time (τ R) were not significantly influenced, the reptation relaxation time (τ D) was strongly increased by the presence of nanoparticles. In step shear transient tests, the critical shear rate \( \left({\dot{\upgamma}}_{\mathrm{cr}}\right) \) for overshoot appearance was decreased due to chain confinement, and the formation of particle network strongly increased the level of stress overshoot. Particle networks increased significantly the nonlinear parameters (I 3/I 1 and Q 0) obtained under LAOS and quantified by FT-rheology. In all measurements, due to the higher surface area associated to its size and density as well as hollow structure, CNT showed stronger effects compared to clay. Moreover, while the percolation concentration was different for CNT and clay, both systems showed similar behavior at percolation: a 0.5 scaling for G′ indicating a Rouse-dominated behavior.  相似文献   

4.
Diglycidyl ether of bisphenol A (DGEBA) is widely exploited as an epoxy resin in adhesives and coatings. In this paper, it is used as an oligomer matrix for silica-filled nanocomposites. Rheological measurements show that the pure matrix obeys power-law relaxation dynamics in the vicinity of the dynamic glass transition of this low-molecular-weight glass former. In the filled systems, a low-frequency relaxation appears additionally to the structural α-process of the matrix. Considering the nanocomposites as Newtonian hard-sphere suspensions at low angular frequencies (or high temperatures), the modified terminal regime behavior of the matrix can be linked to strain-induced perturbations of the isotropic filler distributions. While in the low-frequency regime hydrodynamic stresses relax instantaneously, the Brownian stress relaxation is viscoelastic and can be evidenced by dynamic rheological measurements. At higher angular frequencies, the α-process of the matrix superimposes on the Brownian stress relaxation. In particular, we were able to depict the low-frequency anomaly for concentrated, semi-dilute, and even for dilute suspensions.  相似文献   

5.
A dynamic identification technique in the time domain for time invariant systems under random external forces is presented. This technique is based on the use of the class of restricted potential models (RPM), which are characterized by a non-linear stiffness and a special form of damping, that is a product of the input power spectral density (PSD) matrix and the velocity gradient of a non-linear function of the total mechanical energy. By applying stochastic differential calculus and by specific analytical manipulations, some algebraic equations, depending on the response statistics and on the mechanic parameters that characterize RPM, are obtained. These equations can be used for the dynamic identification of the above mechanic parameters once the response statistics of the system to be identified are evaluated. The proposed technique allows one to identify single-degree-of-freedom or multi-degrees-of-freedom systems in the case of unmeasurable input. Further, the probabilistic characteristics of the external forces can be completely estimated in terms of PSD matrix.  相似文献   

6.
A few additional data from our previous experiments were plotted to emphasize the shear-thickening behavior of deoxy sickle erythrocyte (SS) suspension. A constitutive equation (named as FX equation) was developed and applied to a cylindrical pipe flow of a shear-thickening fluid. A blunt velocity profile and its volume flow rate were calculated. The flow was non-viscous (potential) in the central part of the pipe (i.e. the central core or the central plug-flow), and became more and more viscous towards the wall of the pipe after a specific radial distance, which was determined by a critical shear rate of (named as Fungs shear rate). Furthermore, combining the FX equation with the original Cassons equation, the author obtained a modified Cassons equation by introducing .The English text was polished by Yunming Chen.  相似文献   

7.
In this work, the rheological behaviour of high molecular mass polyamide 6 (PA6)/organo-montmorillonite nano-composites, obtained via melt blending, was investigated under shear and extensional flow. Capillary rheometry was used for the measurement of high shear rate steady state shear viscosity and die entrance pressure losses; further, by the application of a converging flow method (Cogswell model) to these experimental results, elongational viscosity data were indirectly calculated. The extensional behaviour was directly investigated by means of melt spinning experiments, and data of apparent elongational viscosity were determined. The results evidenced that the presence of the organo-clay in filled PA6 melts modifies the rheological behaviour of the material, with respect to the unfilled polymer, in dependence on the type of flow experienced by the fluid. In shear flow, the nano-composites showed a slightly lower viscosity than neat PA6, whereas in elongation, they appeared much more viscous, in dependence on the organo-clay content.  相似文献   

8.
Suspensions of polydimethylsiloxane (PDMS) containing low amounts (1 wt.% or less) of a highly conducting carbon black (CB) filler are rendered conductive and exhibit electrorheological (ER) responses under shear flow when exposed to an externally applied AC electric field. The presence of columnar structures, consisting of CB particles aligned in the direction of the electric field is evidenced through optical microscopy experiments. The appearance of yielding behavior and positive ER response, manifested by an increase in the viscosity of the suspensions, depend strongly on the filler loading, strength of the electric field, magnitude of the shear field, and viscosity of the medium. The responses are stronger at low filler loadings, below the percolation threshold, and at very low shear rates, where the microstructure of the dispersed phase remains intact. At higher shear rates, corresponding to Mason numbers (Mn) above 1, the structure is disrupted and thus does not contribute to the observed shear stress. The rheological characterization is accompanied with admittance measurements, to demonstrate that the induced polarization forces between particles lead to the formation of electrically conductive structures within the polymer matrix. A critical comparison with the qualitative predictions based on the theory of induced dipole–dipole interactions shows that the theory is valid for these dilute systems.  相似文献   

9.
This work presents different rheological methods to determine the effect of fiber surface treatment on their interaction with a polymer matrix. In particular, surface-initiated catalytic polymerization was investigated on hemp fibers to improve their adhesion with linear medium-density polyethylene (LMDPE). The selected rheological tests (creep-recovery (solid state), small and large amplitude oscillation shear, and transient rheology (melt state)) were used to compare the treated and untreated fiber composites with the neat matrix. The results showed a significant improvement of the treated hemp composite (LPHC) creep modulus with respect to its untreated counterpart (LNHC) leading to a reduction of the creep strain, especially as temperature increases. The transient viscosity was modeled using a modified Kohlrausch-Williams-Watt (KWW) equation showing an increase in the transient viscosity (\( {\eta}_0^{+} \)) and relaxation time (τ) with fiber addition and surface treatment. These results were confirmed by large amplitude oscillatory shear (LAOS) through the reduction of the relative third harmonic (I3/1), intrinsic nonlinearity parameter (Q0), and nonlinear viscoelastic ratio (NRL). The results clearly show that catalytic polymerization is a good surface modification technique to increase the compatibility between natural fibers and polymer matrices as to improve all their final properties.
Graphical Abstract ?
  相似文献   

10.
Filled polymer systems have been a subject of interest for rheologists for several decades. Their applications range from paints and pigments to high performance composite materials. Presently, there is a lack of complete understanding of the behavior of these materials under varying kinematic and dynamic conditions. Moreover, there is a lack of a comprehensive theory, which can simultaneously describe the rheology of filled rubbers, their chemorheology, and their behavior in the final fully cured state. The present work is aimed at capturing a wide range of rheological (viscoelastic and kinetic) properties of filled rubbers with one set of constitutive/kinetic equations and a flexible relaxation spectrum. The various experiments covered are yield-flow transition in creep, shear start up responses, dynamic behavior in the melt state, and the changes during the cure stage. In the post cure state, the manifestations in Mullins stress softening-hysteresis and recovery, large strain stress relaxations, and dynamic behavior are also demonstrated. Finally, the non-linearities during large strain dynamic deformations, accompanied by non-isothermal, viscoelastic, and structure effects are exemplified. Received: 24 July 2000 Accepted: 13 November 2000  相似文献   

11.
There is a strong interest today in concentrated particulate-filled dispersion and slurries in both polymeric and Newtonian fluids. This paper reviews and extends theoretical approaches using percolation theory concepts to characterize the rheological behavior of fluids filled with particulate solids. First, a previously proposed limiting, zero shear viscosity model based on percolation theory concepts is reviewed. This model has been primarily tested with rigid fillers in a Newtonian carrier and polymeric fluids. Second, all Newtonian fluid-based slurries that have a high concentration of filler become pseudoplastic, shear-thinning slurries at some threshold shear rate. A new theory is reviewed and new data are evaluated that correlate the power law constant, n, to cluster formation of the fillers suspended in the fluids in shear flow. Slurry systems reported here cover a size range from 58 nm to 200 μm. Third, this cluster percolation-based rheological analysis is then extended to a newly proposed model for the calculation of the ratio of infinite shear, η, to the zero shear viscosity, η0. Using literature data, it is demonstrated that measurements of the viscosity ratio, η/η0, correlate with the power law through the use of an energy dissipation-based model for Bingham rheological fluids.  相似文献   

12.
In the present work the effects produced by the presence of two different surfactants (Abil B 8842 and Triton N 101) on the rheological properties of aqueous welan matrices are studied, both in steady and in oscillatory shear conditions. Welan is an acidic microbial polysaccharide having high thermal, pH, and salt stability. At sufficiently low concentrations it forms aqueous weak gel matrices which can be profitably used to regulate the rheological properties of disperse systems and improve their stability. Different systems are examined, having the same polysaccharide concentration (0.25 wt%) and different surfactant concentrations (up to 40 wt%, far beyond the range of practical interest for emulsion preparation). All the systems exhibit marked shear-thinning properties which can be described quite satisfactorily by the Cross equation. The concentration dependence of the zero-shear-rate viscosity as well as the mechanical spectra confirm that, in the concentration range considered, the aqueous welan systems are typically weakly structured fluids. The influence of both surfactants is examined in detail by comparing the behavior of the different classes of systems. Both surfactants reduce the polymer contribution at low shear, whereas an opposite action is exerted at high concentration and shear. These contrasting effects are ascribed to the different structural features of the polymer matrix under low stresses and high shear conditions, respectively. Received: 6 February 2000 Accepted: 1 November 2000  相似文献   

13.
This paper studies the generalized Lorenz canonical form of dynamical systems introduced by elikovský and Chen [International Journal of Bifurcation and Chaos 12(8), 2002, 1789]. It proves the existence of a heteroclinic orbit of the canonical form and the convergence of the corresponding series expansion. The ilnikov criterion along with some technical conditions guarantee that the canonical form has Smale horseshoes and horseshoe chaos. As a consequence, it also proves that both the classical Lorenz system and the Chen system have ilnikov chaos. When the system is changed into another ordinary differential equation through a nonsingular one-parameter linear transformation, the exact range of existence of ilnikov chaos with respect to the parameter can be specified. Numerical simulation verifies the theoretical results and analysis.  相似文献   

14.
Upscaling in Subsurface Transport Using Cluster Statistics of Percolation   总被引:1,自引:0,他引:1  
Transport/flow problems in soils have been treated in random resistor network representations (RRNs). Two lines of argument can be used to justify such a representation. Solute transport at the pore-space level may probably be treated using a system of linear, first-order differential equations describing inter-pore probability fluxes. This equation is equivalent to a random impedance network representation. Alternatively, Darcys law with spatially variable hydraulic conductivity is equivalent to an RRN. Darcys law for the hydraulic conductivity is applicable at sufficiently low pressure head in saturated soils, but only for steady-state flow in unsaturated soils. The result given here will have two contributions, one of which is universal to any linear conductance problem, i.e., requires only the applicability of Darcys (or Ohms) law. The second contribution depends on the actual distribution of linear conductances appropriate. Although nonlinear effects in RRNs (including changes in resistance values resulting from current, analogous to changes in matric potential resulting from flow) have been treated within the framework of percolation theory, the theoretical development lags the corresponding development of the linear theory, which is, in principle, on a solid foundation. In practice, calculations of the nonlinear conductivity in relatively (compared with soils) well characterized solid-state systems such as amorphous or impure semiconductors, do not agree with each other or with experiment. In semiconductors, however, experiments do at least appear consistent with each other.In the limit of infinite system size the transport properties of a sufficiently inhomogeneous medium are best calculated through application of critical rate analysis with the system resistivity related to the critical (percolating) resistance value, Rc. Here well-known cluster statistics of percolation theory are used to derive the variability, W (R,x) in the smallest maximal resistance, R of a path spanning a volume x3 as well as to find the dependence of the mean value of the conductivity, (x). The functional form of the cluster statistics is a product of a power of cluster size, and a scaling function, either exponential or Gaussian, but which, in either case, cuts off cluster sizes at a finite value for any maximal resistance other than Rc. Either form leads to a maximum in W (R,x) at R=Rc. When the exponential form of the cluster statistics is used, and when individual resistors are exponential functions of random variables (as in stochastic treatments of the unsaturated zone by the McLaughlin group [see Graham and MacLaughlin (1991), or the series of papers by Yeh et al. (1985, 1995), etc.], or as is known for hopping conduction in condensed matter physics), then W (R,x) has a power law decay in R/Rc (or Rc/R, the power being an increasing function of x. If the statistics of the individual resistors are given by power law functions of random variables (as in Poiseiulles Law), then an exponential decay in R for W (R,x) is obtained with decay constant an increasing function of x. Use, instead, of the Gaussian cluster statistics alters the case of power law decay in R to an approximate power, with the value of the power a function of both R and x.  相似文献   

15.
A detailed analytical and experimental investigation is presented to understand the dynamic fracture behavior of functionally graded materials (FGMs) under mode I and mixed mode loading conditions. Crack-tip stress, strain and displacement fields for a mixed mode crack propagating at an angle from the direction of property gradation were obtained through an asymptotic analysis coupled with a displacement potential approach. This was followed by a comprehensive series of experiments to gain further insight into the behavior of propagating cracks in FGMs. Dynamic photoelasticity coupled with high-speed photography was used to obtain crack tip velocities and dynamic stress fields around the propagating cracks. Birefringent coatings were used to conduct the photoelastic study due to the opaqueness of the FGMs. Dynamic fracture experiments were performed using different specimen geometries to develop a dynamic constitutive fracture relationship between the mode I dynamic stress intensity factor (K ID ) and crack-tip velocity ( ) for FGMs with the crack moving in the direction of increasing fracture toughness. A similar -K ID relation was also obtained for matrix material (polyester) for comparison purposes. The results obtained show that crack propagation velocities in FGMs were about 80% higher than the polyester matrix. Crack arrest toughness was found to be about 10% lower than the value of local fracture toughness in FGMs.  相似文献   

16.
The dynamic mechanical behavior of suspensions of wood flour in polypropylene (PP) melts was investigated at varying filler concentrations. The main observed features were related to the viscoelastic nature of the polymer and to the filler aggregation, where the process of formation and destruction of particle clusters is governed by the polymer chain dynamics. The effect of the wood flour particles at low and large deformations was analyzed. The sample containing a wood flour concentration of 50% (by weight) showed a solid like behavior at low frequencies and was identified as the sample closer to a liquid-solid transition (LST). The values of the Newtonian viscosity obtained from sinusoidal oscillations at low frequencies were related to the concentration of filler in the suspensions. Moreover, a filler concentration scaling was found, that allows to obtain a master curve using the neat polymer as the reference and from which it is possible to calculate the dynamic mechanical behavior of all the suspensions. Apparently, for this system, the relaxation mechanisms of the neat polymer are not changed by the presence of the filler. However, the corresponding relaxation times are increased as a function of the filler concentration.  相似文献   

17.
High shear microfluidics and its application in rheological measurement   总被引:1,自引:0,他引:1  
High shear rheology was explored experimentally in microchannels (150×150 m). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooneys analysis. Shear rates as high as 106 s–1 were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1×103 Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly.  相似文献   

18.
The present paper is concerned with experimental and numerical investigations of planar complex flows of weak elastic polymer solutions (whose concentration are below the critical overlap concentration), characterised by small relaxation times (<0.1 s) and almost constant shear viscosities for small and medium shear rates. The main aim of the study is to detect to what extent a very small amount of elasticity present in a viscous fluid can influence its behaviour in complex flows, without introducing major modifications of classical rheological tests. The samples are polymer solutions of low PIB molecular weight dissolved in highly viscous Newtonian mineral oil. The analysed motion is steady, and takes place in an open channel around a T profile. Maximum values of the characteristic parameters for the experiments, the Reynolds and Weissenberg numbers, were 45 and 0.1, respectively. The experiments show a decrease of the wake length downstream the profile for weak elastic solutions in comparison to the Newtonian solvent. Actually, the same wake length as in the Newtonian case was obtained for tested polymer solutions, but at higher Re numbers. Numerical simulations using the Giesekus model predict the same behaviour and are consistent with experiments from both qualitative and quantitative point of views. The results of research conclude that, even in small amounts, the presence of elasticity in pure viscous liquids induces quantitative changes from Newtonian flow in complex dominant elongational flows, at elongational rates for which the sudden thickening of extensional viscosity is remarkable. The study is important, since it should enable better understanding and modelling of viscoelastic flows that involve dilute polymer solutions, or fluids with similar rheology; biofluid mechanics being one area of application of this research. Corroboration of experimental flow visualization with numerical simulation is currently a feasible method used to characterise weak elastic polymer solutions, since classical rheological techniques generally fail to obtain realistic values of relaxation time for these particular viscoelastic fluids. Corneliu Balan dedicates this paper to the anniversary of one hundred years from the birth of Academician Dumitru Dumitrescu (1904–1983), charismatic personality of the Romanian school of fluid mechanics.
C. BalanEmail: Phone: +40-21402-9705Fax: +40-21402-9865
  相似文献   

19.
The dynamic behaviour of a specific two-dimensional state space model with discontinuity is studied. This model arises from the study of double-loop -modulators with constant input. Using mathematical tools we explain certain simulation results, and some properties are derived. Simulations based on time-varying input are also provided.  相似文献   

20.
We studied the influence of nanoparticles with different surface modifications on the interfacial tension and relaxation of model polymer blend after cessation of different strains. The droplet retraction experiments were carried out on a model system composed of polydimethylsiloxane (PDMS) as the suspending fluid and polyisobutylene (PIB) as droplet at room temperature in the presence of hydrophobic and hydrophilic nanosilica. Different weight fractions of particles were dispersed in the PIB droplet before forming a dispersed droplet by using a microsyringe in shear cell. We found that applied strain, nanoparticle concentration and their thermodynamically preferred localization affect both nominal interfacial tension and droplet retraction process. By addition of nanoparticles at a concentration as low as 0.2%wt, the nominal interfacial tension decreases from 3.12?±?0.15 mN/m for neat PIB-PDMS interface depending on the surface characteristics of nanosilica. Hydrophilic nanosilica has the most effect on nominal interfacial tension and decreases it as low as 0.2?±?0.21 mN/m at 1 wt.% loading under a strain of 7. The results show that the retraction process in this system is mainly controlled by interfacial phenomena rather than bulk rheological properties. Additionally, the shape evolution of droplets changes and the retraction rate slows down in the presence of nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号