首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Neutron-diffraction data on aqueous solutions of hydroxides, at solute concentrations ranging from 1 solute per 12 water molecules to 1 solute per 3 water molecules, are analyzed by means of a Monte Carlo simulation (empirical potential structure refinement), in order to determine the hydration shell of the OH- in the presence of the smaller alkali metal ions. It is demonstrated that the symmetry argument between H+ and OH- cannot be used, at least in the liquid phase at such high concentrations, for determining the hydroxide hydration shell. Water molecules in the hydration shell of K+ orient their dipole moment at about 45 degrees from the K+-water oxygen director, instead of radially as in the case of the Li+ and Na+ hydration shells. The K+-water oxygen radial distribution function shows a shallower first minimum compared to the other cation-water oxygen functions. The influence of the solutes on the water-water radial distribution functions is shown to have an effect on the water structure equivalent to an increase in the pressure of the water, depending on both ion concentration and ionic radius. The changes of the water structure in the presence of charged solutes and the differences among the hydration shells of the different cations are used to present a qualitative explanation of the observed cation mobility.  相似文献   

2.
We study the hydration shell formation of alkali metal ions at a graphite surface. Two-dimensional shell structures are found in the initial stage of hydration, in contrast to the three-dimensional structures in bulk water and clusters. Comparison of vibrational spectra with experiments identifies the shell structures and the thermally induced transition from the first to the second shell. We also found intriguing competition between hydration and ion-surface interaction, leading to different solvation dynamics between K and Na. Implications of these results in ionic processes at interfaces are elaborated.  相似文献   

3.
A hydration-shell model has been developed for calculating the interaction energy between ions in water. The hydration shell around each ion contains a few tightly bound water molecules and a larger number of less tightly bound molecules. The energies of their interaction with the ion and the size of the hydration shell have been derived from published experimental data for ion-water clusters in the gas phase. An expression derived for the interaction energy of two univalent ions in water incorporates the following effects: a Lennard-Jones 6–12 interaction, a Coulomb interaction between the charges, the polarization of the hydration shells by a neighboring ion, and an energy term for the removal of water from the hydration shells when the hydration shells of two ions overlap. The effective dielectric constant at small ion-ion distances is the only adjustable parameter. Computed interaction energies for aqueous solutions of twelve alkali halides match experimental values, derived from conductimetric measurements, with an average error of ±14%.  相似文献   

4.
Path integral Monte Carlo calculations of (4)He nanodroplets doped with alkali (Na(+), K(+) and Cs(+)) and alkali-earth (Be(+) and Mg(+)) ions are presented. We study the system at T = 1 K and between 14 and 128 (4)He atoms. For all studied systems, we find that the ion is well localized at the center of the droplet with the formation of a "snowball" of well-defined shells of localized (4)He atoms forming solid-like order in at least the first surrounding shell. The number of surrounding helium shells (two or three) and the number of atoms per shell and the degree of localization of the helium atoms are sensitive to the type of ion. The number of (4)He atoms in the first shell varies from 12 for Na(+) to 18 for Mg(+) and depends weakly on the size of the droplet. The study of the density profile and of the angular correlations shows that the local solid-like order is more pronounced for the alkali ions with Na(+) giving a very stable icosahedral order extending up to three shells.  相似文献   

5.
Structural and dynamical properties of the hydration of Li(+), Na(+), and K(+) in liquid water at ambient conditions were studied by first principles molecular dynamics. Our simulations successfully captured the different hydration behavior shown by the three alkali ions as observed in experiments. The present analyses of the dependence of the self-diffusion coefficient and rotational correlation time of water on the ion concentration suggest that Li(+) (K(+)) is certainly categorized as a structure maker (breaker), whereas Na(+) acts as a weak structure breaker. An analysis of the relevant electronic structures, based on maximally localized Wannier functions, revealed that the dipole moment of H(2)O molecules in the first solvation shell of Na(+) and K(+) decreases by about 0.1 D compared to that in the bulk, due to a contraction of the oxygen lone pair orbital pointing toward the metal ion.  相似文献   

6.
Molecular dynamics simulations have been performed to investigate the hydration of Li(+), Na(+), K(+), F(-), and Cl(-) inside the carbon nanotubes at temperatures ranging from 298 to 683 K. The structural characteristics of the coordination shells of ions are studied, including the ion-oxygen radial distribution functions, the coordination numbers, and the orientation distributions of the water molecules. Simulation results show that the first coordination shells of the five ions still exist in the nanoscale confinement. Nevertheless, the first coordination shell structures of cations change more significantly than those of anions because of the preferential orientation of the water molecules induced by the carbon nanotube. The first coordination shells of cations are considerably less ordered in the nanotube than in the bulk solution, whereas the change of the first coordination shell structures of the anions is minor. Furthermore, the confinement induces the anomalous behavior of the coordination shells of the ions with temperature. The first coordination shell of K(+) are found to be more ordered as the temperature increases only in the carbon nanotube with the effective diameter of 1.0 nm, implying the enhancement of the ionic hydration with temperature. This is contrary to that in the bulk solution. The coordination shells of the other four ions do not have such behavior in the carbon nanotube with the effective diameter ranging from 0.73 to 1.00 nm. The easier distortion of the coordination shell of K(+) and the match of the shell size and the nanotube size may play roles in this phenomenon. The exchange of water molecules in the first coordination shells of the ions with the solution and the ion diffusion along the axial direction of the nanotube are also investigated. The mobility of the ions and the stability of the coordination shells are greatly affected by the temperature in the nanotube as in the bulk solutions. These results help to understand the biological and chemical processes at the high temperature.  相似文献   

7.
Using a surface force balance, we have measured normal and shear interactions between mica surfaces across pure water and across 0.1 M aqueous solutions of LiNO3, NaNO3, KNO3, and CsNO3, both prior to adding polymer and following addition of 1.5 x 10(-4) w/w poly(ethylene oxide) (PEO, Mw = 170 kD) and overnight incubation. Our results reveal that while the PEO adsorbs strongly from the KNO3 and CsNO3 solutions, unexpectedly it does not adsorb at all from the LiNO3 and NaNO3 salt solutions. We attribute this to the different nature of the hydration layers about the alkali metal ions: these favor liganding to the negatively charged mica surface of the etheric -O- group on the ethylene oxide monomer for the case of the more weakly hydrated K+ and Cs+, but not for the case of Na+ or Li+ with their more strongly bound water. A simple model relating the electrostatic energy changes occurring upon such liganding to the experimentally measured hydration energies of the different alkali metal ions supports this attribution.  相似文献   

8.
Hydrophobic hydration, the perturbation of the aqueous solvent near an apolar solute or interface, is a fundamental ingredient in many chemical and biological processes. Both bulk water and aqueous solutions of apolar solutes behave anomalously at low temperatures for reasons that are not fully understood. Here, we use (2)H NMR relaxation to characterize the rotational dynamics in hydrophobic hydration shells over a wide temperature range, extending down to 243 K. We examine four partly hydrophobic solutes: the peptides N-acetyl-glycine-N'-methylamide and N-acetyl-leucine-N'-methylamide, and the osmolytes trimethylamine N-oxide and tetramethylurea. For all four solutes, we find that water rotates with lower activation energy in the hydration shell than in bulk water below 255 +/- 2 K. At still lower temperatures, water rotation is predicted to be faster in the shell than in bulk. We rationalize this behavior in terms of the geometric constraints imposed by the solute. These findings reverse the classical "iceberg" view of hydrophobic hydration by indicating that hydrophobic hydration water is less ice-like than bulk water. Our results also challenge the "structural temperature" concept. The two investigated osmolytes have opposite effects on protein stability but have virtually the same effect on water dynamics, suggesting that they do not act indirectly via solvent perturbations. The NMR-derived picture of hydrophobic hydration dynamics differs substantially from views emerging from recent quasielastic neutron scattering and pump-probe infrared spectroscopy studies of the same solutes. We discuss the possible reasons for these discrepancies.  相似文献   

9.
Ferrous sulfates of various hydration states (FeSO(4) X xH(2)O; x=7, 4, 1) and jarosites (MFe(3)(SO(4))(2)(OH)(6); M=Na or K) were synthesized and studied by micro-Raman spectroscopy between 295 and 8K. Spectral analyses of the sulfate and water/hydroxyl vibrational modes are presented. Fingerprint regions attributed to the symmetric (nu(1)) and antisymmetric (nu(3)) stretching vibrations of the sulfate group are found to vary with the degree of hydration in hydrous ferrous sulfate. In jarosites, the Raman shift of the OH stretching mode is related to the type of alkali metal present between the tetrahedral and octahedral layers. The Raman technique can thus unambiguously identify ferrous sulfate of various hydration states and jarosites bearing different alkali metal ions.  相似文献   

10.
A study of the hydration of the alkali metal ions in aqueous solution   总被引:1,自引:0,他引:1  
The hydration of the alkali metal ions in aqueous solution has been studied by large angle X-ray scattering (LAXS) and double difference infrared spectroscopy (DDIR). The structures of the dimethyl sulfoxide solvated alkali metal ions in solution have been determined to support the studies in aqueous solution. The results of the LAXS and DDIR measurements show that the sodium, potassium, rubidium and cesium ions all are weakly hydrated with only a single shell of water molecules. The smaller lithium ion is more strongly hydrated, most probably with a second hydration shell present. The influence of the rubidium and cesium ions on the water structure was found to be very weak, and it was not possible to quantify this effect in a reliable way due to insufficient separation of the O-D stretching bands of partially deuterated water bound to these metal ions and the O-D stretching bands of the bulk water. Aqueous solutions of sodium, potassium and cesium iodide and cesium and lithium hydroxide have been studied by LAXS and M-O bond distances have been determined fairly accurately except for lithium. However, the number of water molecules binding to the alkali metal ions is very difficult to determine from the LAXS measurements as the number of distances and the temperature factor are strongly correlated. A thorough analysis of M-O bond distances in solid alkali metal compounds with ligands binding through oxygen has been made from available structure databases. There is relatively strong correlation between M-O bond distances and coordination numbers also for the alkali metal ions even though the M-O interactions are weak and the number of complexes of potassium, rubidium and cesium with well-defined coordination geometry is very small. The mean M-O bond distance in the hydrated sodium, potassium, rubidium and cesium ions in aqueous solution have been determined to be 2.43(2), 2.81(1), 2.98(1) and 3.07(1) ?, which corresponds to six-, seven-, eight- and eight-coordination. These coordination numbers are supported by the linear relationship of the hydration enthalpies and the M-O bond distances. This correlation indicates that the hydrated lithium ion is four-coordinate in aqueous solution. New ionic radii are proposed for four- and six-coordinate lithium(I), 0.60 and 0.79 ?, respectively, as well as for five- and six-coordinate sodium(I), 1.02 and 1.07 ?, respectively. The ionic radii for six- and seven-coordinate K(+), 1.38 and 1.46 ?, respectively, and eight-coordinate Rb(+) and Cs(+), 1.64 and 1.73 ?, respectively, are confirmed from previous studies. The M-O bond distances in dimethyl sulfoxide solvated sodium, potassium, rubidium and cesium ions in solution are very similar to those observed in aqueous solution.  相似文献   

11.
Neutron diffraction data with hydrogen isotope substitution on aqueous solutions of NaCl and KCl at concentrations ranging from high dilution to near-saturation are analyzed using the Empirical Potential Structure Refinement technique. Information on both the ion hydration shells and the microscopic structure of the solvent is extracted. Apart from obvious effects due to the different radii of the three ions investigated, it is found that water molecules in the hydration shell of K+ are orientationally more disordered than those hydrating a Na+ ion and are inclined to orient their dipole moments tangentially to the hydration sphere. Cl- ions form instead hydrogen-bonded bridges with water molecules and are readily accommodated into the H-bond network of water. The results are used to show that concepts such as structure maker/breaker, largely based on thermodynamic data, are not helpful in understanding how these ions interact with water at the molecular level.  相似文献   

12.
We report a theoretical investigation of the adsorption of alkali metal atoms deposited on ultrathin oxide films. The properties of Li, Na, and K atoms adsorbed on SiO(2)/Mo(112) and of K on MgO / Ag(100) and TiO(2)/Pt(111) have been analyzed with particular attention to the induced changes in the work function of the system, Phi. On the nonreducible SiO(2) and MgO oxide films there is a net transfer of the outer ns electron of the alkali atom to the metal substrate conduction band; the resulting surface dipole substantially lowers Phi. The change in Phi depends (a) on the adsorption site (above the oxide film or at the interface) and (b) on the alkali metal coverage. Deposition of K on reducible TiO(2) oxide films results in adsorbed K(+) ions and in the formation of Ti(3+) ions. No charge transfer to the metal substrate is observed but also in this case the surface dipole resulting from the K-TiO(2) charge transfer has the effect to considerably reduce the work function of the system.  相似文献   

13.
The distribution and dynamics of alkali cations inside Na-AOT reverse micelles have been investigated using Monte Carlo and molecular dynamics simulations. Water is modeled using the extended simple point charge (SPC/E) model. Simulations were carried out for alkali salts of Li+, Na+, K+, and Cs+ placed into the aqueous core of the reverse micelle, for situations corresponding to one and three molecules of added salt. In all cases, we observe that the larger K+ and Cs+ ions exchange with the Na+ counterion; however, the smaller Li+ ion prefers to remains solvated within the core of the reverse micelle. Our study reveals that the oil-water interface of the Na-AOT reverse micelle has the greatest selectivity toward Cs+ followed by K+ and Li+. A model based on enthalpic contributions illustrates that the solvation energies of the different cations in water control the ion-exchange process. The hydration number of the first water shell for Li+ situated in the aqueous core of the reverse micelle with radius R = 14.1 A was similar to that observed at infinite dilution in bulk water.  相似文献   

14.
We study the interaction of alkali metal chlorides with lipid vesicles made of palmitoyloleoylphosphatidylcholine (POPC). An elaborate set of techniques is used to investigate the binding process at physiological conditions. The alkali cation binding to POPC is characterized thermodynamically using isothermal titration calorimetry. The isotherms show that for all ions in the alkali group the binding process is endothermic, counterintuitively to what is expected for Coulomb interactions between the slightly negatively charged POPC liposomes and the cations. The process is entropy driven and presumably related to the liberation of water molecules from the hydration shells of the ions and the lipid headgroups. The measured molar enthalpies of the binding of the ions follows the Hofmeister series. The binding constants were also estimated, whereby lithium shows the strongest affinity to POPC membranes, followed by the rest of the ions according to the Hofmeister series. Cation adsorption increases the net surface potential of the vesicles as observed from electrophoretic mobility and zeta potential measurements. While lithium adsorption leads to slightly positive zeta potentials above a concentration of 100 mM, the adsorption of the rest of the ions mainly causes neutralization of the membrane. This is the first study characterizing the binding equilibrium of alkali metal chlorides to phosphatidylcholine membranes at physiological salt concentrations.  相似文献   

15.
Hydration force between mica surfaces in aqueous KCl electrolyte solution   总被引:3,自引:0,他引:3  
Liquid-vapor molecular dynamics simulations are performed to study the interaction forces between two mica surfaces in an aqueous KCl electrolyte solution. Strong repulsive hydration force is obtained within a distance of ~2 nm between the two mica surfaces, which cannot be explained by the continuum theory of double-layer repulsion. We find that this short-range repulsive hydration force is much stronger than the double-layer force between mica surfaces. Whereas the simulation system is much smaller than the surface force measurement system, fundamental mechanisms of repulsive hydration force are revealed. In particular, important features of the step-like force oscillatory behavior during normal compression and force hysteresis during retraction are observed. Detailed analysis of the ionic density distributions shows that the "forced adsorption" of diffusive K(+) ions onto mica surfaces during compression and the subsequent "slow desorption" of the absorbed K(+) ions from mica surfaces upon retraction are responsible for the hysteresis phenomenon. From a mechanics point of view, we attribute the load bearing capacity of the dense electrolyte to the very hard hydration shells of K(+) metal ions under confinement. We find that the hydrated K(+) ions and Cl(-) co-ions remain very diffusive in the aqueous film. Water molecules in the hydration layer are also very fluidic, in the sense that the diffusion constant of water molecules is less than its bulk value by at most 3 orders of magnitude under the extreme confinement.  相似文献   

16.
采用分子动力学模拟研究了气液界面上钙离子对阴离子表面活性剂十二烷基苯磺酸钠单层膜聚集结构的影响.结果表明,单层膜结构与表面覆盖度及Ca2+离子存在与否均有关系.Ca2+离子能够压缩表面活性剂极性头使聚集结构排列更加紧密,均力势体现了Ca2+离子与极性头之间的结合能力强弱,二者之间的相互作用与稳定的溶剂分离极小值有关,而Ca2+离子需要克服一个溶剂能障才能与之发生相互作用,并引起极性头周围水分子结构的重排.模拟表明,分子动力学方法可以在分子水平上研究无机盐离子对表面活性剂单层膜水化结构的影响,解释无机盐离子在界面膜中的动力学行为.  相似文献   

17.
Lipophilic cyclodextrin (CD) derivatives were prepared to extract alkali metal cations from a water phase into an organic phase. The extraction equilibrium constant, K ex, was determined by the solvent extraction method using UV absorption spectroscopy. Hydroxyl groups at the carbons in the 2,6-positions of CD molecules were dipropylated to add the hydrophobicity for dissolving into organic solvents, and furthermore hydroxyl groups at the carbons in the 3-position of these derivatives were acylated as complexing sites with the alkali metal cations. These CD derivatives formed a 1 : 1 complex with alkali metal cations, except for the case of Li+, and transported the alkali metal cations from a water phase into a benzene phase. The initial concentrations of alkali metal cation and picrate anion in the water phase and that of the CD derivatives in the organic phase strongly influenced the extraction equilibrium. Extraction of the alkali metal cation by the derivative without acyl groups was not detected. K ex values of these CD derivatives are of the same order of magnitude as or larger than those of crown ethers. The order of the K ex values in all cases is Li+ < Na+ < K+ Rb+ Cs+, although these CD derivatives have no special selectivity for the alkali metal cations. The cation extraction mechanism was interpreted by an induced-fit mechanism.  相似文献   

18.
There is a considerable disagreement about the extent to which solutes perturb water structure. On the one hand, studies that analyse structure directly only show local structuring in a solute's first and possibly second hydration shells. On the other hand, thermodynamic and kinetic data imply indirectly that structuring occurs much further away. Here, the hydrogen-bond structure of water around halide anions, alkali cations, noble-gas solutes, and at the vapor-water interface is examined using molecular dynamics simulations. In addition to the expected perturbation in the first hydration shell, deviations from bulk behavior are observed at longer range in the rest of the simulation box. In particular, at the longer range, there is an excess of acceptors around halide anions, an excess of donors around alkali cations, weakly enhanced tetrahedrality and an oscillating excess and deficiency of donors and acceptors around noble-gas solutes, and enhanced tetrahedrality at the vapor-water interface. The structuring compensates for the short-range perturbation in water-water hydrogen bonds induced by the solute. Rather than being confined close to the solute, it is spread over as many water molecules as possible, presumably to minimize the perturbation to each water molecule.  相似文献   

19.
The effect of Ca(2+) ions on the hydration shell of sodium dodecyl carboxylate (SDC) and sodium dodecyl sulfonate (SDSn) monolayer at vapor/liquid interfaces was studied using molecular dynamics simulations. For each surfactant, two different surface concentrations were used to perform the simulations, and the aggregation morphologies and structural details have been reported. The results showed that the aggregation structures relate to both the surface coverage and the calcium ions. The divalent ions can screen the interaction between the polar head and Na(+) ions. Thus, Ca(2+) ions locate near the vapor/liquid interface to bind to the headgroup, making the aggregations much more compact via the salt bridge. The potential of mean force (PMF) between Ca(2+) and the headgroups shows that the interaction is decided by a stabilizing solvent-separated minimum in the PMF. To bind to the headgroup, Ca(2+) should overcome the energy barrier. Among contributions to the PMF, the major repulsive interaction was due to the rearrangement of the hydration shell after the calcium ions entered into the hydration shell of the headgroup. The PMFs between the headgroup and Ca(2+) in the SDSn systems showed higher energy barriers than those in the SDC systems. This result indicated that SDSn binds the divalent ions with more difficulty compared with SDC, so the ions have a strong effect on the hydration shell of SDC. That is why sulfonate surfactants have better efficiency in salt solutions with Ca(2+) ions for enhanced oil recovery.  相似文献   

20.
Using a surface force balance, we have measured the normal and shear forces between mica surfaces across aqueous caesium salt solutions (CsNO(3) and CsCl) up to 100 mM concentrations. In contrast to all other alkali metal ions at these concentrations, we find no evidence of hydration repulsion between the mica surfaces on close approach: the surfaces appear to be largely neutralized by condensation of the Cs ions onto the charged lattice sites, and are attracted on approach into adhesive contact. The contact separation at adhesion indicates that the condensed Cs ions protrude by 0.3 +/- 0.2 nm from each surface, an observation supported both by the relatively weak adhesion energies between the surfaces, and the relatively weak frictional yield stress when they are made to slide past each other. These observations show directly that the hydration shells about the Cs(+) ions are removed as the ions condense into the charged surface lattice. This effect is attributed to the low energies-resulting from their large ionic radius-required for dehydration of these ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号