首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of nuclear magnetic resonance (NMR) relaxation time measurements for characterization of abnormal cardiac tissue depends upon knowledge of variations of relaxation times of normal myocardium and determinants of these variations. We calculated in vitro NMR T1 and T2 relaxation times of canine myocardium from the four cardiac chambers, and determined hydroxyproline concentration (as a measure of collagen) and percent water content of the samples. We found both water content and T1 relaxation time of the right ventricle to be significantly greater than the left atrium (p < 0.05). T2 relaxation time of the left ventricle was found to be shorter than each of the other three chambers (p < 0.05). There were significant correlations between the spin-lattice relaxation time and both percent water content (r = 0.58) and hydroxyproline concentration (r = 0.45). A significant correlation was also found between T2 relaxation time and hydroxyproline concentration (r = 0.49). When T1 and T2 were adjusted for water and hydroxyproline content, there was no longer any evidence for significant interchamber differences for either T1 or T2. These data suggest that differences in NMR relaxation times exist among the four chambers of the normal canine heart. Furthermore, a major determinant of myocardial spin-lattice relaxation time is tissue water content while both collagen content and percent water content significantly contribute to variability in cardiac chamber T2 relaxation times.  相似文献   

2.
Low grade gliomas were studied with ultra low field magnetic resonance imaging (ULF MRI). The tumors exhibited high tissue contrast in both T1 and T2-weighted images as compared to normal brain tissue. Moreover they were sharply delineated towards the surrounding brain tissue. When compared with X-ray computed tomography the tumors were more readily detected and delineated by using ultra-low field magnetic imaging. A computerassisted classification procedure was used to define new regions of interest for relaxation time estimation. By using this procedure more accurate estimations of the T1 and T2 values were obtained.  相似文献   

3.
Nuclear magnetic resonance (NMR) longitudinal (T1) and transverse (T2) relaxation parameters have been evaluated for protein solutions, cellular suspensions and tissues using both data from our laboratory and the extensive literature. It is found that this data can be generalized and explained in terms of three water phases: free water, hydration water, and crystalline water. The proposed model which we refer to as the FPD model differs from similar models in that it assumes that free and hydration water are two phases with distinct relaxation times but that T1 = T2 in each phase. In addition there is a single correlation time for each rather than a distribution as assumed in most other models. Longitudinal decay is predicted to be single exponent in character resulting from a fast exchange between the free and hydration compartments. Transverse decay is predicted to be multiphasic with crystalline (T2 10 μsec), hydration (T2 10 sec) and free (T2 100 sec) water normally visible. The observed or effective transverse relaxation times for both the hydration and free water phases are greatly affected by the crystalline phase and are much shorter than the inherent relaxation times.  相似文献   

4.
The goal of this study was to determine the expected normal range of variation in spin-lattice relaxation time (T1) of brain tissue in vivo, as a function of age. A previously validated precise and accurate inversion recovery method was used to map T1 transversely, at the level of the basal ganglia, in a study population of 115 healthy subjects (ages 4 to 72; 57 male and 58 female). Least-squares regression analysis shows that T1 varied as a function of age in pulvinar nucleus (R2 = 56%), anterior thalamus (R2 = 51%), caudate (R2 = 50%), frontal white matter (R2 = 47%), optic radiation (R2 = 39%), putamen (R2 = 36%), genu (R2 = 22%), occipital white matter (R2 = 20%) (all p < 0.0001), and cortical gray matter (R2 = 53%) (p < 0.001). There were no significant differences in T1 between men and women. T1 declines throughout adolescence and early adulthood, to achieve a minimum value in the fourth to sixth decade of life, then T1 begins to increase. Quantitative magnetic resonance imaging provides evidence that brain tissue continues to change throughout the lifespan among healthy subjects with no neurologic deficits. Age-related changes follow a strikingly different schedule in different brain tissues; white matter tracts tend to reach a minimum T1 value, and to increase again, sooner than do gray matter tracts. Such normative data may prove useful for the early detection of brain pathology in patients.  相似文献   

5.
Proton T2 relaxation times were measured in 13 stroke patients and 13 aged-matched normal subjects at 2.1 T. Spectra were acquired from an 8-cc volume using the STEAM sequence with echo times (TE) of 30.4 ms and 270.0 ms and repetition time of 2.8 s. Transverse relaxation times were estimated using two-point calculations. Percentage volume of infarct in the STEAM voxel was measured on spin-echo MRI encompassing the infarct and correlated with the peak amplitude of N-acetylated compounds (NA). T2 values of NA, creatine, and choline resonances showed no significant difference between patients and controls. T2 for lactate in patients was 780 ± 257 ms, respectively (mean ± SE, n = 7). In stroke patients, high inverse correlation was found between the absolute NA signal and partial volume of normal brain contributing to each spectrum (p < .001, r = 0.97). Together with unchanged T2, this suggests that NAA largely disappears from infarcted tissue within 24 hr postinfarct.  相似文献   

6.
Gastrointestinal contrast enhancement and image distortion induced by superparamagnetic particles were evaluated in vitro and in rabbits at 0.02 Tesla. Test tubes containing 0.01–1.0 mg particles/ml were imaged in an oil or water bath in order to demonstrate the concentration-dependent signal void and image distortion in vitro at several pulse sequences. The lowest concentration of particles tested clearly decreased the signal intensity. Image distortion was observed when the concentration exceeded 0.07 mg/ml and was more pronounced on the T2-weighted images. The in vitro T2 relaxation time decreased from 122 ms to 56 ms with an increase in the particle concentration from 0.01 to 0.06 mg/ml. A loss of the GI-tract signal was observed in rabbits after the administration of 1 mg particles/kg, given as a 0.03 mg/ml suspension. At a dose of 20 mg/kg (0.6 mg/ml suspension) significant image distortion was observed.  相似文献   

7.
A 35Cl nuclear quadrupole resonance (35Cl-NQR) investigation of polycrystalline Ca(ClO3)2·2H2O is described. The 35Cl-NQR frequencies (νQ) for two resonance lines (νQ1 and νQ2), the spin lattice relaxation time (T1Q) for νQ2 only and the line width δνQ2 were measured in the temperature range 292–345 K, except for the frequency measured up to 455 K. The observed decrease in the resonance frequencies with increasing temperature permitted the determination of the frequencies of librations of the ClO3 ion about two axes perpendicular to the three-fold axis of the ion mainly responsible for this effect. The temperature dependence of the relaxation time T1Q proved the occurrence of water diffusion and hindered rotation of ClO3 ions. The activation energies of these two molecular motions were determined, and their effect on the electric field gradient at the site of a chlorine nucleus was discussed. Temperature measurements of the line width δνQ2 confirmed the conclusions drawn from the analysis of T1Q(T).  相似文献   

8.
A method for windowing specific T1 values is presented. A 1.0 T imager with two routine pulse sequences was employed: A T1-weighted spin echo (SE) sequence and a short tau inversion recovery STIR sequence (fat-suppressed IR). A T1 window for fat was obtained by subtracting the STIR image from the SE image. Negative values were coded black. The method was tested on a normal human thigh, on a human liver with confirmed fatty infiltration, and on the livers of four live burbots. The fat-containing tissues of the two human volunteers were well depicted. The differences in fat concentration among the burbot livers were also clearly shown. The fat intensity seen in the images correlated well with the chemically measured fat concentration. This subtraction method for windowing T1 values proved feasible for fat. The method could be used for tissues with other short T1 values as well.  相似文献   

9.
Experimental gliomas (F98) were inoculated in cat brain for the systematic study of their in vivo T2 relaxation time behavior. With a CPMG multi-echo imaging sequence, a train of 16 echoes was evaluated to obtain the transverse relaxation time and the magnetization M(0) at time T = 0. The magnetization decay curves were analyzed for biexponentiality. All tissues showed monoexponential T2, only that of the ventricular fluid and part of the vital tumor tissue were biexponential. Based on these NMR relaxation parameters the tissues were characterized, their correct assignment being assured by comparison with histological slices. T2 of normal grey and white matter was 74 ± 6 and 72 ± 6 msec, respectively. These two tissue types were distinguished through M(0) which for white matter was only 0.88 of the intensity of grey matter in full agreement with water content, determined from tissue specimens. At the time of maximal tumor growth and edema spread a tissue differentiation was possible in NMR relaxation parameter images. Separation of the three tissue groups of normal tissue, tumor and edema was based on T2 with T2(normal) < T2(tumor) < T2(edema). Using M(0) as a second parameter the differentiation was supported, in particular between white matter and tumor or edema. Animals were studied at 1–4 wk after tumor implantation to study tumor development. The magnetization M(0) of both tumor and peritumoral edema went through a maximum between the second and third week of tumor growth. T2 of edema was maximal at the same time with 133 ± 4 msec, while the relaxation time of tumor continued to increase during the whole growth period, reaching values of 114 ± 12 msec at the fourth week. Thus, a complete characterization of pathological tissues with NMR relaxometry must include a detailed study of the developmental changes of these tissues to assure correct experimental conditions for the goal of optimal contrast between normal and pathological regions in the NMR images.  相似文献   

10.
Volume selective magnetic resonance (MR) proton spectroscopy was used to investigate the haemopoietic (iliac bone) and fatty bone marrow (tibia) in patients with leukemia and polycythaemia vera. Selective measurements of the relaxation times T1 and T2 for the “water” and “fat” resonances in the bone marrow spectra were performed. Nine patients with acute leukemia and three patients with chronic leukemia were examined at diagnosis. Three patients with acute leukemia in remission were also examined. Five of the leukemic patients had follow-up examinations performed in relation to chemotherapeutic treatment. Nine patients with polycythaemia vera and 21 normal control subjects were examined with identical methods for comparison. All patients had bone marrow biopsies performed prior to every MR examination. Significant differences could be detected in the spectral patterns from iliac bone marrow in patients with leukemia at diagnosis compared to the healthy normal controls. The “relative water content” was increased in the iliac bone marrow spectra of the leukemic patients compared to the normal subjects, which indicates an increase in the amount of haemopoietic tissue and a corresponding decrease in marrow fat content. The T1 relaxation times of the “water” resonance in the spectra from the iliac bone marrow of the leukemic patients were significantly prolonged at diagnosis, compared to the normal controls and the patients with polycythaemia vera. After chemotherapeutic induction of remission, the spectra from the iliac bone marrow in the patients with leukemia resembled normal spectra. Four leukemic patients had abnormal spectra from the tibial bone marrow and one patients showed early changes in tibial marrow during chemotherapeutic treatment, before any major changes could be detected in the iliac bone marrow.  相似文献   

11.
An assumption made in using excised tissue for in vitro nuclear magnetic resonance (NMR) studies is that variables of interest, such as spin-lattice (T1) relaxation times, remain stable for periods of time after excision sufficient to perform NMR spectroscopy. In this study, we evaluated the changes in T1 of rat myocardium, measured at two NMR field strengths, at serial time intervals up to 72 hours postmortem. Left ventricular myocardium from six male Sprague-Dawley rats was excised and stored at room temperature in sealed NMR sample tubes. Spin-lattice relaxation times were determined with a modified inversion-recovery pulse sequence immediately postmortem and at intervals up to 72 hours post-excision; NMR studies were performed using 90 MHz and 360 MHz spectrometers. A gradual decrease in T1 was noted with increasing time post-excision; T1 was not significantly shorter than baseline until 72 hours postmortem at either field strength. The rate of change of T1 was similar at the two field strengths. At any given time post-excision, T1 was significantly higher (p < 0.001) at 360 MHz than at 90 MHz. We conclude that, with proper tissue handling and storage techniques, rat myocardial T1 is stable postmortem sufficiently long to permit meaningful NMR studies of excised tissue.  相似文献   

12.
Renal cortical and medullary spin-lattice (T1) relaxation times were measured at various time points over a period of 56 days following the administration of a single i.p. injection of 100 mg/kg 2-bromoethanamine hydrobromide (BEA), 200 mg/kg hexachloro-1,3-butadiene (HCBD) or 100 mg/kg puromycin aminonucleoside (PAN) to male Wistar rats. Administration of a single injection of HCBD caused a dramatic, immediate rise in the cortical T1 values above control values, and these levels remained elevated until, by Day 28 postinjection the levels were back to control values. Administration of BEA also caused an elevation in cortical T1 values, but in this case these values remained above control values for the rest of the study. The administration of PAN did not produce any significant increases in cortical T1 values until 14 days postinjection. The elevated T1 values remained above control values for the rest of the study. These increases observed in cortical T1 values appeared to be mirrored by decreases in medullary T1 values. Increases in cortical T1 values were accompanied by visual changes in the NMR images and enlargement of the kidneys. The histological findings were consistent with the NMR data, confirming that morphologically the tissues did show a full recovery by Day 28 in the HCBD-treated animals. This was not the case following injection of both BEA and PAN, where necrosis was not reversible and there was no recovery of the tissues.  相似文献   

13.
Thirteen patients with biopsy proven hepatic lymphoma (2 Hodgkin, 11 Non-Hodgkin) and a control group of 15 patients with hepatic metastases were analyzed quantitatively and qualitatively by MRI. Focal hepatic lymphoma was most reliably detected (eight of eight patients) and appeared hypointense relative to liver on T1 weighted (CNR − 7.4 ± 2.3) and hyperintense on T2 weighted (CNR + 8.4 ± 2.9) images. The mean T1 and T2 relaxation times of focal hepatic lymphoma (T1 = 832 ± 234 msec, T2 = 84 ± 16 ms) differed significantly from adjacent non-tumorous liver (T1 = 420 ± 121 ms, T2 = 51 ± 9 ms; p < 0.05), however CNR values and relaxation times were similar to those of hepatic metastases. Diffuse hepatic lymphoma (microscopic periportal infiltration) was undetectable by MRI in three patients by either morphologic features or quantitative criteria. A mixed pattern of hepatic lymphoma (focal lesions and diffuse infiltration) showed focal areas of slightly decreased signal intensity on T1 weighted images (CNR = −1.7 ± 0.4) while T2 weighted images revealed multiple regions of focal hyperintensity (CNR = +13.3 ± 8.4) superimposed on a diffusely hyperintense liver. Our experience demonstrates that either T1 or T2 weighted techniques are useful in detecting focal and that T2 weighted techniques are useful in detecting mixed hepatic lymphoma. Conventional image derived relaxation time measurements and quantitative parameters were of no additional diagnostic value.  相似文献   

14.
31P-magnetic resonance spectroscopy (MRS) has been shown to be a promising method for monitoring tumor response to radiation therapy. The purpose of the work reported here was to investigate whether the usefulness of 31P-MRS might be enhanced by measurement of spin-lattice relaxation times (T1s) in addition to resonance ratios. The work was based on the hypothesis that tumors having a high probability of being controlled locally would show shortened T1s during the treatment course due to reoxygenation and development of necrosis. BEX-t human melanoma xenografts, which show efficient reoxygenation and development of necrosis following single dose irradiation, were used as tumor models. Tumors were treated with single doses of 5.0 or 15.0 Gy and the T1s of the inorganic phosphate and nucleoside triphosphate β resonances were measured as a function of time after irradiation by using the superfast inversion recovery method. Fractional tumor water content was determined by drying excised tumors at 50°C until a constant weight was reached. The T1s in irradiated tumors were either longer than or not significantly different from those in unirradiated control tumors. The increase in the T1s following irradiation coincided in time with a radiation-induced increase in tumor water content, suggesting a causal relationship. The effects of reoxygenation and development of necrosis on T1s were probably overshadowed by the effects of tumor water content. Consequently, the usefulness of 31P-MRS in monitoring tumor response to radiation therapy might not be significantly enhanced by measurement of T1s.  相似文献   

15.
Longitudinal and transverse proton relaxation times were measured on pig tendon. For T1, dispersion curves and more accurate measurements at 20 MHz are presented. Values of T2 were obtained from CPMG pulse sequences, at 20 MHz. The dependence of relaxation times against the fiber-to-field angle was particularly investigated. Longitudinal relaxation rate was found to be almost orientation independent, and presented quadrupolar peaks between 1 and 4 MHz. On the contrary, transverse relaxation, that was well fitted by the sum of four exponentials, was highly orientation dependent. Deconvolution showed that the exponentials decaying most quickly are most orientation dependent. For those two fractions, a cross-relaxation model allowed explaining the fiber-to-field angle dependence, and the specially low rate corresponding to the magic angle of 55°. Finally, each decaying mode was assigned to a fraction of protons localized in the macromolecular structure and characterized by particular dynamics.  相似文献   

16.
Superparamagnetic iron oxide particles (SPIOs) are usually referred to as T2 MR contrast agents, reducing signal intensity (SI) on T2-weighted MR images (negative enhancement). This study reports the original use of SPIOs as T1-enhancing contrast agents, primarily assessed in vitro, and then applied to an in vivo investigation of a myocardial perfusion defect. Using a strongly T1-weighted subsecond MR sequence with SPIOs intravenous (IV) bolus injection, MR imaging of myocardial vascularization after reperfusion was performed, on a dog model of coronary occlusion followed by reperfusion. Immediately after the intravenous bolus injection of 20 μmol/kg of SPIOs, a positive signal intensity enhancement was observed respectively, in the right and left ventricular cavity and in the nonischemic left myocardium. Moreover, compared to normal myocardium, the remaining ischemic myocardial region (anterior wall of the left ventricle) appeared as a lower and delayed SI enhancing area (cold spot). Mean peak SIE in the nonischemic myocardium (posterior wall) was significantly higher than in the ischemic myocardium (anterior wall) (110 ± 23% vs. 74 ± 22%, Mann-Whitney test < 1%, n1 = 6, n2n1 = 0, U > 2). In conclusion, the T1 effect of SPIOs at low dose, during their first intravascular distribution, suggests their potential use as positive markers to investigate the regional myocardial blood flow and some perfusion defects such as the “no-reflow phenomenon”.  相似文献   

17.
Spin-lattice relaxation times T1 and T are determined for protons in three polycrystals (CH3NH3)5Bi2Cl11, (CD3NH3)5Bi2Cl11 and (CH3ND3)5Bi2Cl11. The temperature dependencies of the relaxation times obtained for (CH3NH3)5Bi2Cl11 and (CD3NH3)5Bi2Cl11 are interpreted as a result of correlated motions of the three-proton groups of the monomethylammonium cation. The minimum of the T relaxation time is explained as a result of the oscillations of the symmetry axis of the whole cation.  相似文献   

18.
本文对具有特定横向弛豫时间(T2)的硫酸铜溶液进行了多回波间隔(TE)的核磁共振(NMR)实验,并利用数值模拟对32组具有不同弛豫分量的模型进行了变TE模拟实验,定量研究了TE对致密油气、页岩气等低孔低渗储层NMR孔隙度的影响规律.实验结果表明,随着TE的增大,各T2弛豫组分NMR孔隙度先维持在100%左右,然后迅速衰减,当TE增加到一定数值时,趋近于0;不同T2弛豫组分NMR孔隙度开始迅速衰减及最后变为0的TE值存在显著差异.根据不同T2弛豫组分NMR孔隙度与TE的关系,将整个NMR测量分为无损测量区、快速衰减区、无效参数区和仪器盲区4个区域.对特定弛豫组分而言,在快速衰减区弛豫组分损失量与TE呈对数关系,本文还给出了该区域NMR孔隙度的校正公式及方法.  相似文献   

19.
Localized water suppressed proton spectroscopy has opened up a new field of pathophysiological studies of severe brain ischemia. The signals obtained with the pulse sequences used so far are both T1 and T2 weighted. In order to evaluate the extent to which changes in metabolite signals during the course of infarction can be explained by changes in T1 and T2 relaxation times, eight patients with acute stroke were studied. STEAM sequences with varying echo delay times and repetition times were used to measure T1 and T2 of N-acetyl-aspartate (NAA), creatine plus phosphocreatine (Cr+PCr) and choline containing compounds (CHO) in a 27-ml voxel located in the affected area of the brain. Ten healthy volunteers served as controls. We found no difference in T1 or T2 of the metabolites between the patients and the normal controls. The T2 of CHO was longer than that of NAA and Cr+PCr. Our results indicate that spectra obtained in brain infarcts and normal tissue with the same acquisition parameters are directly comparable with respect to relative signal intensities as well as signals scaled with internal and external standards.  相似文献   

20.
The 63Cu NMR Knight shift K and spin-lattice relaxation rate 1/T1 have been measured to study the thiospinel superconductor Cu1.5Rh1.5S4 from a microscopic viewpoint. K is negative and has a weak dependence on temperature, and the hyperfine coupling constant Hhfd is estimated to be −52.4 kOe/μB. 1/T1 is proportional to the temperature in the normal state. In the superconducting state, 1/T1 takes a coherence peak just below Tc, and decreases exponentially well below Tc, from whose temperature dependence the superconducting energy gap has been proved to be close to 2Δ = 3.52kBTc given by the BCS theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号