首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
利用水合肼还原十八胺(ODA)接枝的氧化石墨烯(GO),得到了十八胺功能化石墨烯(ODA-G),将ODAG与聚苯胺(PANI)通过溶液共混法,制备了功能化石墨烯和聚苯胺纳米复合材料(ODA-G/PANI).采用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、热重分析(TGA)、拉曼(Raman)光谱及透射电镜(TEM),对复合材料的结构和形貌进行了表征;利用循环伏安、恒流充放电及交流阻抗谱等,对复合材料的电化学性能进行了测试.结果显示,少量ODA-G的引入为PANI的电化学氧化还原反应提供了更多的电子通道和活性位置,有利于提高PANI的赝电容.在电流密度1.0 A·g-1下,2%(w)ODA-G/PANI的比电容达到787 F·g-1,而相应的PANI仅有426 F·g-1.此外,ODA-G/PANI的循环稳定性也远高于纯PANI.  相似文献   

2.
利用水合肼还原十八胺(ODA)接枝的氧化石墨烯(GO),得到了十八胺功能化石墨烯(ODA-G),将ODAG与聚苯胺(PANI)通过溶液共混法,制备了功能化石墨烯和聚苯胺纳米复合材料(ODA-G/PANI). 采用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、热重分析(TGA)、拉曼(Raman)光谱及透射电镜(TEM),对复合材料的结构和形貌进行了表征;利用循环伏安、恒流充放电及交流阻抗谱等,对复合材料的电化学性能进行了测试. 结果显示,少量ODA-G的引入为PANI 的电化学氧化还原反应提供了更多的电子通道和活性位置,有利于提高PANI 的赝电容. 在电流密度1.0 A·g-1下,2%(w)ODA-G/PANI 的比电容达到787 F·g-1,而相应的PANI 仅有426 F·g-1. 此外,ODA-G/PANI的循环稳定性也远高于纯PANI.  相似文献   

3.
Modified graphite oxide (MGO)/Poly (propylene carbonate) (PPC) composites with excellent thermal and mechanical properties have been prepared via a facile solution intercalation method. An intercalated structure of MGO/PPC composites was confirmed by X-ray diffraction and scanning electron microscope. The thermal and mechanical properties of MGO/PPC composites were investigated by thermal gravimetric analysis, differential scanning calorimetric, dynamic mechanical analysis, and electronic tensile tester. Due to the nanometer-sized dispersion of layered graphite in PPC matrix and the strong interfacial interaction between MGO and PPC, the prepared MGO/PPC composites exhibit improved thermal and mechanical properties in comparison with pure PPC. Compared with pure PPC, the MGO/PPC composites show the highest thermal stability and the Tg is 13.8 °C higher than that of pure PPC, while the tensile strength (29.51 MPa) shows about 2 times higher than that of pure PPC when only 3.0 wt.% MGO is incorporated. These results indicate that this approach is an efficient method to improve the properties of PPC.  相似文献   

4.

The paper investigates preparation and mechanical performances of a composite ceramic coating reinforced by graphene and multi-walled carbon nanotube. The carbon nanotube is functionalized with the carboxyl functional group (–COOH) and un-functionalized with sodium dodecyl benzene sulfonate (SDBS). The structure of the functionalized and hybrid-functionalized carbon nanotube is identified using infrared spectroscopy (FTIR analysis). The coating is brushed on the matrix and then cures under temperature lower than 250°C. The morphological and cross section features are studied by scanning electron microscopy (SEM). The distributions of hardness and fracture toughness are determined using a microhardness tester. The adhesive strength is evaluated using a universal tensile tester. The tribological properties are detected using friction wear testing machine. The experimental results show that the structure of the composite coating is compact, and both graphene and hybridtreated carbon nanotube are well dispersed. Addition of 0.2 wt % graphene and 0.2 wt % hybrid-functionalized carbon nanotube results in a prominent increase in hardness and fracture toughness. Meanwhile, the adhesive strength between the composite coating and the metallic substrate is well improved due to the high tensile strength of both graphene and carbon nanotube. Compared with pure alumina coating, the friction coefficient as well as the wear depth and width of grinding crack of the composite coating is much lower.

  相似文献   

5.
采用水热法制备了一系列混合相二氧化钛-石墨烯(TrG)的复合物, 并考察了石墨烯的用量对降解污染物甲基蓝的影响. 采用X射线衍射(XRD), 傅里叶变换红外(FTIR)光谱, 高分辨透射电镜(HRTEM), 拉曼光谱,紫外-可见漫反射吸收光谱(UV-Vis DRS), X射线光电子能谱(XPS)和比表面积(BET)等测试手段对复合材料进行表征. 结果表明, 复合材料中TiO2为棒状的混合相, 且均匀分散在石墨烯表面. 由于石墨烯良好的吸光性能,混合相中的异质结和复合物的良好光电子传递能力以及高比表面积, 复合材料具有较高的光催化活性. 所制备的TrG复合材料在紫外光下降解甲基蓝的催化活性均高于纯TiO2, 且当氧化石墨烯负载量为0.8% (质量分数,w)时, 复合材料TrG具有较好的光催化效果.  相似文献   

6.
In this work, we report the preparation of graphene nanoplatelet which covalently functionalized with PMMA chains by introduction of vinyl groups onto graphene surface through simple esterification reaction between hydroxyl groups of graphite oxide and methacrylic anhydride. The synthesis is followed by in-situ polymerization with MMA monomers. The structural properties were characterized with X-ray diffraction spectroscopy (XRD) and scanning electronic microscopy (SEM) that showed the crystalline graphite is converted to individual layers during the synthesis steps. The grafting of PMMA chains was monitored with IR spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The TGA results revealed 40% wt of PMMA chains chemically grafted onto graphene surface. Significant increase in glass transition temperature (Tg) and existence of polymer chains in two positions (physically absorbed and chemically grafting onto graphite surface) are indicated by differential scanning calorimetric (DSC) analysis.  相似文献   

7.
《先进技术聚合物》2018,29(4):1322-1333
This work aims to develop novel composites from a poly(L ‐lactide‐co‐trimethylene carbonate‐co‐glycolide) (PLTG) terpolymer and mesoporous silica (SBA‐15) nanofillers surface modified by post‐synthetic functionalization. SBA‐15 first reacts with a silane coupling agent, γ‐aminopropyl‐trimethoxysilane to introduce ammonium group. PLLA chains were then grafted on the surface of SBA‐15 through ammonium initiated ring‐opening polymerization of L ‐lactide. Composites were prepared via solution mixing of PLTG terpolymer and surface modified SBA‐15. The structures and properties of pure SBA‐15, γ‐aminopropyl‐trimethoxysilane modified SBA‐15 (H2N‐SBA‐15), PLLA modified SBA‐15 (PLLA‐NH‐SBA‐15), and PLTG/PLLA‐NH‐SBA‐15 composites were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscopy, N2 adsorption‐desorption, differential scanning calorimetry, contact angle measurement, and mechanical testing. The results demonstrated that PLLA chains were successfully grafted onto the surface of SBA‐15 with grafting amounts up to 16 wt.%. The PLTG/PLLA‐NH‐SBA‐15 composites exhibit good mechanical properties. The tensile strength, Young's modulus, and elongation at break of the composite containing 5 wt.% of PLLA‐NH‐SBA‐15 were 39.9 MPa, 1.3 GPa, and 273.6%, respectively, which were all higher than those of neat PLTG or of the composite containing 5 wt.% of pure SBA‐15. Cytocompatibility tests showed that the composites present very low cytotoxicity.  相似文献   

8.
To improve the interfacial properties of carbon fibre-reinforced polymer composites, a surface treatment was used to cap cross-linked poly-itaconic acid onto carbon fibres via in-situ polymerization after itaconic acid grafting. The chemical composition of the modified carbon fiber (CF) surface was characterized by X-ray photoelectron spectral and Fourier-transform infrared spectroscopy. Scanning electron microscopy and atomic force microscopy images showed that the poly-itaconic acid protective sheath was uniformly capped onto the CF surface and that the surface roughness was obviously enhanced. Chemical bonds also played a key role in the interfacial enhancement. The results showed that the interfacial shear strength of the composites with poly-itaconic acid on the carbon fibres (72.2 MPa) was significantly increased by 89.5% compared with that of the composites with pristine CF (38.1 MPa). Moreover, the poly-itaconic acid sheath promoted a slight increase in mono-fibre tensile strength. In addition, the interfacial mechanisms were also discussed. Meanwhile, the mechanical property of the functionalized CF/epoxy resin composites was also significantly improved.  相似文献   

9.
One-pot hydrothermal reduction of graphene oxide (GO) in N-methyl-2-pyrrolidone (NMP) suspension was performed, wherein GO surface were functionalized by free radicals generated from NMP molecules. The NMP functionalized reduced GO (NMPG) nanosheets were then incorporated into epoxy matrix to prepare epoxy composites. The significant improvement of 100 and 240% in fracture toughness (critical intensity factor, KIC) and fracture energy (critical strain energy release rate, GIC) achieved from single edge notched bending (SENB) test revealed the excellent toughening ability of NMPG. The improved compatibility and interfacial interaction between the epoxy matrix and NMPG yielded∼28, 19 and 51% improvement in tensile strength, Young's and storage modulus, respectively. Thermal stability of pure epoxy and its composites was determined at 5, 10 and 50% weight loss, which showed 30, 27.5 and 29 °C improvement with 0.2 wt% NMPG loading. The work provides a simple method to prepare graphene-based epoxy composites with improved performance.  相似文献   

10.
A novel functionalized multi walled carbon nanotube (MWCNT) was prepared through grafting with α-azido-poly(ethylene-co-butylene) (PEB-N3). The PEB-N3 was prepared through a two step procedure and grafted onto an industrial grade multi walled carbon nanotube (MWCNT) through a highly efficient nitrene addition. This novel nano filler was melt mixed into polypropylene (PP) and the composite was characterized by FT-IR spectroscopy, Raman spectroscopy, Scanning Electron Microscopy (SEM), Rheology and Dielectric Relaxation Spectroscopy (DRS). The analyses showed that composites with the novel filler had a high degree of discharge from the surface and higher conductivity compared to the pristine filler, illustrating an efficient conductive network in the composites. The composites showed low percolation thresholds of 0.3 wt.% (0.15 vol.%) as well as improved stability at a range of temperatures from 25–135 °C.  相似文献   

11.
Zinc dimethacrylate functionalized graphene (Z‐GE), as reinforcing nanofiller for natural rubber (NR), was synthesized by liquid‐phase exfoliation and in situ method. The morphology and structure of Z‐GE were characterized to confirm the exfoliation and functionalization of GE. The NR/Z‐GE composites were prepared and investigated by mechanical analysis, crosslinked network analysis and the analysis of thermal conductivity. The results showed that the tensile strength, tear strength and modulus at 300% strain of NR/Z‐GE‐20 composites (contents 1.400 phr GE) were increased by 142%, 76% and 231% as compared with the pure NR, respectively. And the thermal conductivity of NR/Z‐GE‐30 composites is enhanced by 39% as that of the pure NR. This significant improvement is attributed to the formation of covalent crosslinked network and ionic crosslinked network and efficient interfacial interaction between GE and NR matrix. This method provides a new insight into the fabrication of multifunctional GE composites and enlarges its potential applications in high performance GE‐based rubber composites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Uniform dispersion of graphene nanosheets (GNS) in a polymer matrix with strong filler–matrix interfacial interaction, preserving intrinsic material properties of GNS, is the critical factor for application of GNS in polymer composites. In this work, a novel reactive copolymer VCz–GMA containing carbazole and epoxide group was designed, synthesized and employed to noncovalently functionalize GNS for preparing epoxy nanocomposites with enhanced mechanical properties. The presence of carbazole groups in VCz–GMA enables the tight absorption of copolymer on to graphene surface via π–π stacking interaction, as evidenced by Raman and fluorescence spectroscopy, whereas the epoxide segments chemically reacts with the epoxy matrix, improving the compatibility and interaction of graphene with epoxy matrix. As a result, the VCz–GMA–GNS/epoxy composite showed a remarkable enhancement in both mechanical and thermal property than either the pure epoxy or the graphene/epoxy composites. The incorporation of 0.35 wt % VCz–GMA–GNS yields a tensile strength of 55.72 MPa and elongation at break of 3.45, which are 42 and 191% higher than the value of pure epoxy, respectively. Increased glass transition temperature and thermal stability of the epoxy composites were also observed. In addition, a significant enhancement in thermal conductivity was achieved with only 1 wt % VCz–GMA–GNS loading. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2776–2785  相似文献   

13.
A facile and scalable preparation of dispersion of isolated graphene in various organic solvents has been developed by combining between covalent and noncovalent functionalizations of the graphene surface. Covalently functionalized graphene (FRG) was prepared by the reaction of partially reduced graphene oxide with aryl diazonium salts, followed by the graphene oxide being completely reduced with hydrazine. The resulting FRG disperse readily in organic solvents such as N,N′-dimethylformamide (DMF) and N-methyl-2-pyrrolidinone and the functionalization of graphene was characterized by Fourier transform infrared spectroscopy, thermogravimetric thermogram, X-ray photoelectron spectroscopy, and Raman spectroscopy. The hydrophobic surface of FRG was noncovalently wrapped with aromatic hexakis-dodecylhexa-peri-benzocorone (HBC) by simply mixing of dispersion of FRG in DMF with toluene solution of HBC. The complexation of FRG and HBC was monitored by viewing the absorption and fluorescence spectral changes. Atomic force microscopic images confirmed that graphene was covalently and noncovalently functionalized, while keeping a two-dimensional sheet shape.  相似文献   

14.
以鳞片石墨为原料, 用改进的Hummers法制备氧化石墨烯(GO), 以异丙醇钛为钛源经一步水热法制备得到金红石相TiO2-石墨烯复合材料(rGO-TiO2), 考察了氧化石墨烯用量对复合材料光催化性能的影响. 采用X射线衍射(XRD), 比表面积(BET), 透射电镜(TEM), 扫描电镜(SEM), 拉曼光谱, 紫外-可见(UV-Vis)吸收光谱和荧光光谱(PL)等测试手段对复合材料进行表征. 结果表明: 复合材料中TiO2为针簇状结构的金红石相, 与石墨烯能够均匀复合; 与纯金红石相TiO2相比, 复合材料具有较大的比表面积. 研究了该复合材料在紫外光下对罗丹明B 以及可见光下对甲基橙光降解效果. 当氧化石墨烯浓度为0.5 mg·mL-1时, 制备得到的复合材料rGO-TiO2具有较好的光催化效果.  相似文献   

15.
Graphene nanoplatelets (GnP) and α-MnO2 decorated GnP were integrated into an ethylene vinyl acetate (EVA) matrix using the dual mixing method (solution followed by melt mixing). GnP was added in 1, 3, 5, 8, 10 and 15 phr loadings into an EVA matrix to obtain composites and evaluate their various properties suitable for mechanical and electrical applications. The graphene nanoplatelets were further decorated with α-MnO2 which was subsequently integrated into EVA at an 8 phr loading to form composites. It was observed in the GnP-EVA composites, that with an increasing GnP content, a substantial increase in the tensile strength (188%) over the neat polymer was observed at a 10 phr loading but reduced thereafter at a 15 phr loading. Dielectric permittivity of the composites were observed to increase with an increasing filler loading, the addition of α-MnO2 also having a beneficial effect. Conductivity as well as the electromagnetic interference shielding performance were improved with increasing GnP concentrations. A maximum 28 dB of shielding was observed in the 15 phr loaded GnP-EVA composite whereas the α-MnO2 decorated GnP-EVA composite showed a shielding efficiency of 22 dB at a concentration of 8 phr for a thickness of 2 mm with excellent thermal and mechanical properties. Overall, the composite material will find its application as a flexible EMI shielding material.  相似文献   

16.
Composites based on epoxy/graphene were investigated for thermal-mechanical performance. Initially, few-layer graphene oxide (GO) was modified with tetraethylenepentamine (GO-TEPA) in a reaction assisted by microwave radiation. GO and GO-TEPA samples were characterized for their structure and morphology. Composites containing 0.1, 0.3 and 0.5 wt.% of GO and GO-TEPA were prepared, and the effect of fillers on the morphology of cryofractured regions of epoxy matrix was observed through electron microscopy images. Dynamic mechanical thermal analysis (DMA) tests revealed increases of approximately 20 °C in glass transition. Moreover, when compared to neat polymer, composites containing 0.5 wt.% of GO-TEPA gained up to 103% in thermal conductivity (obtained by flash laser). Finally, nanoindentation analyses showed increases of 72% in Young's modulus and 143% in hardness for the same sample. The system is characterized as multifunctional nanocomposites because of the simultaneous gains in thermal and mechanical properties. The best results of the multifunctional composites were strongly associated with the chemical modification of the GO by TEPA.  相似文献   

17.
廖双泉 《高分子科学》2015,33(7):1058-1068
An effective procedure has been developed to synthesize the functionalized graphene oxide grafted by maleic anhydride grafted liquid polybutadiene(MLPB-GO). Fourier transform spectroscopy and X-ray photoelectron spectroscopy indicate the successful functionalization of GO. The NR/MLPB-GO composites were then prepared by the co-coagulation process. The results show that the mechanical properties of NR/MLPB-GO composites are obviously superior to those of NR/GO composites and neat NR. Compared with neat NR, the tensile strength, modulus at 300% strain and tear strength of NR composite containing 2.12 phr MLPB-GO are significantly increased by 40.5%, 109.1% and 85.0%, respectively. Dynamic mechanical analysis results show that 84% increase in storage modulus and 2.9 K enhancement in the glass transition temperature of the composite have been achieved with the incorporation of 2.12 phr MLPB-GO into NR. The good dispersion of GO and the strong interface interaction in the composites are responsible for the unprecedented reinforcing efficiency of MLPB-GO towards NR.  相似文献   

18.
一种可分散性石墨烯的制备   总被引:2,自引:0,他引:2  
先通过γ-氨丙基三乙氧基硅烷(KH-550)与氧化石墨反应得到改性氧化石墨, 再经水合肼还原制备了改性石墨烯. 未烘干的改性石墨烯经超声处理后, 可稳定分散于体积比为9∶1的N,N-二甲基甲酰胺/水或丙酮/水的混合溶液中, 而且在N,N-二甲基甲酰胺/水体系中超声得到的改性石墨烯分散液可在乙醇、丙酮中稳定存在. 采用红外光谱、X光电子能谱及X射线衍射分析等手段研究了KH-550改性氧化石墨及石墨烯的结构. 结果表明, KH-550上的氨基与氧化石墨的羧基反应生成了酰胺键, 与环氧基发生了加成反应, 干燥的改性石墨烯层间通过Si-O-Si键连接在一起.  相似文献   

19.
Graphite (expanded graphite(EG), natural graphite (NG) and graphite oxide (GO)) flame retardant poly(ethylene-co-vinyl acetate) copolymer (EVA) composites (EVA/EG, EVA/NG and EVA/GO) have been prepared by melt compounding. The flammability, the combustion process, the quantity of the residual char, the morphology of the residual chars and the thermal stability of the chars were investigated by cone calorimeter, SEM and TGA. The results indicate that heat release rate (HRR), total heat released (THR) and total smoke release (TSR) of EVA/EG (EG 30 phr) composite decrease to about 21%, 42% and 28% of that of pure EVA, respectively. The orders of the three kinds of graphite on the reduction effect of THR and TSR are EG > NG > GO. The higher the quantity, the higher is the thermal stability of the char residue and the more compact and porous char structure may be the main reasons for the phenomenon above. It has been found that the flame retardance of EVA vulcanisates is improved and the fire jeopardizing is dramatically reduced due to the addition of the graphite, especially for EG, which can give some advice to design formulations for practical applications as the jackets of cables.  相似文献   

20.
Polyimide nanocomposites having low-k and UV shielding properties have been developed using fluorine functionalized graphene oxide and bis(quinoline amine) based polyimide. The polyimide was synthesized using bis(quinoline amine) and pyromellitic dianhydride at appropriate experimental conditions, and its molecular structure was confirmed through various spectral analysis such as FTIR and NMR. The polyimide (PI) composites were prepared using bis(quinoline amine), pyromellitic dianhydride, and separately filled with 1, 5, 10 wt% of fluorinated graphene oxide (FGO) through in situ polymerization. The polymer composites were characterized using thermo gravimetric analysis (TGA), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). In addition, the water contact angle, dielectric behavior, and UV–Vis shielding behavior of FGO/PI composites were evaluated. The value of the water contact angle of the polyimide was increased with increment of FGO in the polyimide matrix. The highest water contact angle of polyimide composites observed 108° was obtained for 15 wt% FGO reinforced polyimide composite. The value of the dielectric constant for neat, 1, 5, and 15 wt% FGO reinforced polyimide composites was obtained as 4.5, 3.7, 2.6, and 2.0, respectively. It is also observed from by UV–Vis spectroscopy analysis that the FGO reinforced polyimide composites have good UV shielding behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号