首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel silicon-, germanium- and tin-containing imido alkyl complexes of tungsten of the type (ArN)2W(CH2EMe3)2 (; E = Si (1), Ge (2), Sn (3)) have been prepared by the reactions of (ArN)2WCl2(dme) (dme = 1,2-dimethoxyethane) with heteroelement-containing alkyllithium or Grignard reagents Me3ECH2Li (E = Si, Ge), Me3ECH2MgCl (E = Ge, Sn). The title compounds were isolated in high yields as crystalline solids and characterized by elemental analysis, IR, 1H, 13C, 29Si and 119Sn NMR spectroscopy and X-ray diffraction studies. The geometry of the W atoms in the compounds can be described as a distorted tetrahedron.  相似文献   

2.
Singlet-triplet energy gaps in cyclopenta-2,4-dienylidene, as well as its 2- or 3-halogenated derivatives, are compared and contrasted with their sila, germa, stana, and plumba analogues; at HF/6-31G* and B3LYP/ 6-311++G(3df, 2p) levels of theory. Energy gaps (ΔGt-s), between triplet (t) and singlet (s) states, appear linearly proportional to: (i) the size of the group 14 divalent element (M = C, Si, Ge, Sn and Pb), (ii) the angle ∠C-M-C, and (iii) the ΔG(LUMO-HOMO) of the singlet state involved. The magnitude of ΔGt-s, for each 2- and/or 3-substituted species studied, increases with an order of: carbenes < silylenes < germylenes < stanylenes < plumbylenes. This order reverses for the barriers of the ring puckering. The puckering occurs with more ease for every singlet, compared to its corresponding triplet form.Regardless of the group 14 element (M) employed, every 3-halo-substituted species is more stable than the corresponding 2-halo-substituted isomer. For M = Pb, Sn and/or Ge; 3-halo-substituted species have higher ΔGt-s than their corresponding 2-halo-substituted analogues. For M = Si, similar ΔGt-s are found for 2- and 3-halogenated isomers. For M = C, 3-halo-substituted species have lower ΔGt-s than their corresponding 2-halo-substituted analogues.Every cyclic singlet has a larger ∠C-M-C angle, than its corresponding cyclic triplet state, except for 3-halosilacyclopenta-2,4-dienylidenes where triplet has a larger ∠C-M-C angle than its corresponding singlet state.  相似文献   

3.
Some localized singlet 1,3-σ-diradicals, C(MH2)3C, (M = Si, Ge, Sn, Pb) were theoretically designed by the orbital phase theory and density functional theory calculations. The bicyclic carbon-centered singlet diradicals were more stable than the lowest triplets. Except for M = C, σ-bonded isomers were not located for 1,3-σ-diradicals. 1,4-σ-diradicals, C(M2H4)3C, also had singlet ground states, but they were less stable than σ-bonded isomers.  相似文献   

4.
The structure, stability, and thermochemistry of the H(MF3)+ isomers (M = N-Bi) have been investigated by MP2 and coupled cluster calculations. All the HF-MF2+ revealed weakly bound ion-dipole complexes between MF2+ and HF. For M = N, As, Sb, and Bi they are more stable than the H-MF3+ covalent structures (free energy differences) by 6.3, 14.3, 32.1, and 73.5 kcal mol−1, respectively. H-PF3+ is instead more stable than HF-PF2+ by 21.8 kcal mol−1. The proton affinities (PAs) of MF3 at the M atom range from 91.9 kcal mol−1 (M = Bi) to 156.5 kcal mol−1 (M = P), and follow the irregular periodic trend BiF3 < SbF3 < AsF3 < NF3 < PF3. The PAs at the F atom range instead from 131.9 kcal mol−1 (M = P) to 164.9 kcal mol−1 (M = Bi), and increase in the more regular order PF3 ≈ NF3 < AsF3 < SbF3 < BiF3. This trend parallels the fluoride-ion affinities of the MF2+ cations. For protonated NF3 and PF3, the calculations are in good agreement with the available experimental results. As for protonated AsF3, they support the formation of HF-AsF2+ rather than the previously proposed H-AsF3+. The calculations indicate also that the still elusive H(SbF3)+ and H(BiF3)+ should be viable species in the gas phase, exothermically obtainable by various protonating agents.  相似文献   

5.
The biologically important heterocycles pyrrole, C4H4N, and indole, C8H6N, ought to be useful as reagents in organic synthesis. Unfortunately, working with them has proved to be difficult because they tend to self-polymerize in solution, especially in the presence of acid catalysts. When the self-polymerization can be controlled, however, the pyrrole and indole units should provide an important route to selective N-metal binding, particularly when these ligands are activated by alkyl-lithium reagents. Using this approach, a general synthesis of the group 14 pyrrolides and indolides, Ph3MX (M = Si, Ge, Sn; X = C4H4N, C8H6N), has been developed and the results are reported here. The compounds are formed as high-melting, white crystalline solids and have been characterized by 13C-, 29Si- and 119Sn-NMR, Raman and electron-impact mass spectroscopy as well as elemental analysis. A single-crystal X-ray study of Ph3Si(C4H4N) has shown that the compound is disordered in the tetragonal lattice, even at low temperature (100 K).  相似文献   

6.
Complexes [MHCpBz(CO)2(PR3)] (R = CH3, M = Mo (1); M = W (2); R = Ph, M = Mo (3); CpBz = C5(CH2Ph)5) were prepared by thermal decarbonylation of the corresponding [MHCpBz(CO)3] in the presence of trimethyl- or triphenyl-phosphine. In solution the NMR spectra of all compounds show the presence of cis and trans isomers that interconvert at room temperature. In the solid state the molecular structures obtained for compounds 1 and 2 correspond to the trans isomers, while for 3 the cis isomer is present.The electrochemistry of [MoHCpBz(CO)2(PMe3)] (1), [MoHCpBz(CO)3] (5), [WHCpBz(CO)3] (6), [WCpBz(CO)3]2 (7), and [MCpBz(CO)3(CH3CN)]BF4 (8), is described. The cleavage of M-H bonds takes place upon oxidation or reduction. Cations [MCpBz(CO)2L(CH3CN)]+ form in solvent-assisted M-H bond breaking upon oxidation of [MHCpBz(CO)2L] (L = PMe3, CO). Reduction of [MHCpBz(CO)3] gives [MCpBz(CO)3] and H2. The presence of one PMe3 ligand lowers the reduction potential and precludes the observation of reduction waves.  相似文献   

7.
New stable heteroleptic germanium(II) and tin(II) compounds [(SiMe3)2N-E14-OCH2CH2NMe2]n (E14 = Ge, n = 1 (1), Sn, n = 2 (2)) have been synthesized and their crystal structures have been determined by X-ray diffraction analysis. While compound 1 is monomer stabilized by intramolecular Ge ← N coordination, compound 2 is associated to dimer via intermolecular dative Sn ← O interactions.  相似文献   

8.
Various preparative routes for the synthesis of (CH3)3SiP(CF3)2 are discussed. The most favourable method, reaction of (CH3)3MPH2 with HE(CF3)2, provides a good yield of (CH3)3ME(CF3)2 compounds (M = Si, Ge, Sn; E = P, As). The reaction rate is dependent on M (Si < Ge <Sn) und E (P < As). The stability and reactivity of the (CH3)3ME(CF3)2 compounds are discussed. The new compounds were characterized by NMR and IR spectra and by cleavage reactions of the M-E bond. 1H, 19F NMR and IR spectral data are reported.  相似文献   

9.
We find sandwiched metal dimers CB5H6M-MCB5H6 (M = Si, Ge, Sn) which are minima in the potential energy surface with a characteristic M-M single bond. The NBO analysis and the M-M distances (Å) (2.3, 2.44 and 2.81 for M = Si, Ge, Sn) indicate substantial M-M bonding. Formal generation of CB5H6M-MCB5H6 has been studied theoretically. Consecutive substitution of two boron atoms in B7H−27 by M (Si, Ge, Sn) and carbon, respectively followed by dehydrogenation may lead to our desired CB5H6M-MCB5H6. We find that the slip distorted geometry is preferred for MCB5H7 and its dehydrogenated dimer CB5H6M-MCB5H6. The slip-distortion of M-M bond in CB5H6M-MCB5H6 is more than the slip distortion of M-H bond in MCB5H7. Molecular orbital analysis has been done to understand the slip distortion. Larger M-M bending (CB5H6M-MCB5H6) in comparison with M-H bending (MCB5H7) is suspected to be encouraged by stabilization of one of the M-M π bonding MO’s. Preference of M to occupy the apex of pentagonal skeleton of MCB5H7 over its icosahedral analogue MCB10H11 has been observed.  相似文献   

10.
ANi(AsF6)3 (A = O2+, NO+, NH4+) compounds could be prepared by reaction between corresponding AAsF6 salts and Ni(AsF6)2. When mixtures of AF (A = Li, Na, K, Rb, Cs) and NiF2 are dissolved in aHF acidified with an excess of AsF5 the corresponding AAsF6 and Ni(AsF6)2 were formed in situ. For A = Li and Na only mixtures of AAsF6 and Ni(AsF6)2 were obtained, while for A = K, Rb and Cs, the final products were ANi(AsF6)3 (A = K-Cs) compounds contaminated with AAsF6 (A = K-Cs) and Ni(AsF6)2.ANi(AsF6)3 (A = H3O+, O2+, NO+, NH4+ and K+) compounds are structurally related to previously known H3OCo(AsF6)3. The main features of the structure of these compounds are rings of NiF6 octahedra sharing apexes with AsF6 octahedra connected into infinite tri-dimensional network. In this arrangement cavities are formed where single charged cations are placed.In O2Ni(AsF6)3 the vibrational band belonging to O2+ vibration is found at 1866 cm−1, which is according to the literature data one of the highest known values, and it is only 10 cm−1 lower than the value for free O2+.  相似文献   

11.
The influence of group 15 various substituents and effect of metal centers on metal-borane interactions and structural isomers of transition metal-borane complexes W(CO)5(BH3 · AH3) and M(CO)5(BH3 · PH3) (A = N, P, As, and Sb; M = Cr, Mo, and W), were investigated by pure density functional theory at BP86 level. The following results were observed: (a) the ground state is monodentate, η1, with C1 point group; (b) in all complexes, the η1 isomer with CS symmetry on potential energy surface is the transition state for oscillating borane; (c) the η2 isomer is the transition state for the hydrogens interchange mechanism; (d) in W(CO)5(BH3 · AH3), the degree of pyramidalization at boron, interaction energy as well as charge transfer between metal and boron moieties, energy barrier for interchanging hydrogens, and diffuseness of A increase along the series A = Sb < As < P < N; (e) in M(CO)5(BH3 · PH3), interaction energy is ordered as M = W > Cr > Mo, while energy barrier for interchanging hydrogens decreases in the order of M = Cr > W > Mo.  相似文献   

12.
New stable azido derivatives of divalent germanium and tin [N3-E14-OCH2CH2NMe2]2 (E14 = Ge (1), Sn (2)) have been synthesized by use of the β-dimethylaminoethoxy ligand that forms the intramolecular E14 ← N coordination bond. Their crystal structures have been determined by X-ray diffraction analysis. Compounds 1 and 2 are centrosymmetric dimers via two intermolecular dative E14 ← O interactions with essentially linear monodentate azide ligands. The dominant canonical form of the E14-azide moieties is E14-N-NN.  相似文献   

13.
The kinetics of the radical reactions of CH3 with HCl or DCl and CD3 with HCl or DCl have been investigated in a temperature controlled tubular reactor coupled to a photoionization mass spectrometer. The CH3 (or CD3) radical, R, was produced homogeneously in the reactor by a pulsed 193 nm exciplex laser photolysis of CH3COCH3 (or CD3COCD3). The decay of CH3/CD3 was monitored as a function of HCl/DCl concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature, typically from 188 to 500 K. The rate constants of the CH3 and CD3 reactions with HCl had strong non-Arrhenius behavior at low temperatures. The rate constants were fitted to a modified Arrhenius expression k = QA exp (−Ea/RT) (error limits stated are 1σ + Students t values, units in cm3 molecule−1 s−1): k(CH3 + HCl) = [1.004 + 85.64 exp (−0.02438 × T/K)] × (3.3 ± 1.3) × 10−13 exp [−(4.8 ± 0.6) kJ mol−1/RT] and k(CD3 + HCl) = [1.002 + 73.31 exp (−0.02505 × T/K)] × (2.7 ± 1.2) × 10−13 exp [−(3.5 ± 0.5) kJ mol−1/RT]. The radical reactions with DCl were studied separately over a wide ranges of temperatures and in these temperature ranges the rate constants determined were fitted to a conventional Arrhenius expression k = A exp (−Ea/RT) (error limits stated are 1σ + Students t values, units in cm3 molecule−1 s−1): k(CH3 + DCl) = (2.4 ± 1.6) × 10−13 exp [−(7.8 ± 1.4) kJ mol−1/RT] and k(CD3 + DCl) = (1.2 ± 0.4) × 10−13 exp [−(5.2 ± 0.2) kJ mol−1/RT] cm3 molecule−1 s−1.  相似文献   

14.
The reaction of Ph3MLi (M = Si, Ge, and Sn) with tri-t-butylcyclopropenium tetrafluoroborate gives the cyclopropenyl compounds Cyp*MPh3 as air and moisture stable solids in 11%, 74%, and 77% yields, respectively. Attempts to prepare Cyp*PbPh3 by this method were unsuccessful. The X-ray crystal structures of all three of these compounds were obtained. The M-C(Cyp*) bond distances increase with the order: Sn-C (2.19 Å) > Ge-C (2.00 Å) > Si-C (1.91 Å). A high degree of steric strain is evidenced for the silicon derivative which forms an exocyclic bond angle (Si-C(Cyp*)-C(tBu)) of 121.6°. The high degree of steric strain for the silicon analog is believed to be responsible for the low yields for its synthesis.  相似文献   

15.
The reactions of the sterically demanding group-13 alkyls ER3 (E = Al, Ga, In; R = CH2t-Bu, CH2SiMe3) with the platinum-complex [(dcpe)Pt(H)(CH2t-Bu)] were re-investigated. The bimetallic compounds [(dcpe)Pt(ER2)(R)] (3: E = Ga, R = CH2SiMe3; 5: E = In, R = CH2t-Bu; dcpe = bis(dicyclohexylphosphino)ethane) with direct σ(Pt-E) bonds were obtained by oxidative addition of an E-C bond to the coordinatively unsaturated fragment [(dcpe)Pt] produced in situ by thermolysis of the starting complex [(dcpe)Pt(CH2t-Bu)(H)]. The single crystal structure determination reveals a Pt-Ga bond length of 2.376(2) Å and a Pt-In bond length of 2.608(1) Å. All new compounds were characterised by elemental analysis, 31P and 195Pt NMR spectroscopy. Interestingly, the Pt-Ga compound 3 slowly transforms into the platinum alkyl/hydride isomer {(dcpe)Pt(μ2-H)[CH2Si(CH3)2 CH2Ga(CH2SiMe3)2]} (4) during crystallization from solution at room temperature. The X-ray single crystal structure analysis revealed both complexes 3 and 4 coexisting in the unit cell in a 1:1 relation. The inaccessibility of analytically pure samples of the Pt-Al complex {(dcpe)Pt[Al(CH2t-Bu)2](CH2t-Bu)} (6), postulated as intermediate of the reaction of [(dcpe)Pt(H)(CH2t-Bu)] with Al(CH2t-Bu) on the basis of 31P and 195Pt NMR data, is attributed to an enhanced tendency to isomerisation into the alkyl/hydride Pt/Al congener of 4. A brief DFT analysis of the bonding situation of the model complex [(dhpe)Pt(GaMe2)(Me)] (1M) revealed, that the contribution of π(Pt-Ga) back-bonding is negligible.  相似文献   

16.
A straightforward method for the preparation of metallo carbosiloxanes of type Si(OCH2CH2CH2SiMe2[OCH2PPh2M(CO)n])4 (n = 3, M = Ni, 7a; n = 4, M = Fe, 7b; n = 5: M = Mo, 7c; M = W, 7d), Si(OCH2CH2CH2SiMe[OCH2PPh2Ni(CO)3]2)4 (8) and Me2Si(OCH2CH2CH2SiMe[OCH2PPh2Ni(CO)3]2)2 (11) is described. The reaction of Si(OCH2CH2CH2SiMeXCl)4 (1: X = Me, 2: X = Cl) or Me2Si(OCH2CH2CH2SiMeCl2)2 (9) with HOCH2PPh2 (3) produces Si(OCH2CH2CH2SiMe2(OCH2PPh2))4 (4), Si(OCH2CH2CH2SiMe(OCH2PPh2)2)4 (5) or Me2Si(OCH2CH2CH2SiMe(OCH2PPh2)2)2 (10) in presence of DABCO. Treatment of the latter molecules with Ni(CO)4 (6a), Fe2(CO)9 (6b), M(CO)5(Thf) (6c: M = Mo; 6d: M = W), respectively, gives the title compounds 7a-7d, 8 and 11 in which the PPh2 groups are datively bound to a 16-valence-electron metal carbonyl fragment.The formation of analytical pure and uniform branched and dendritic metallo carbosiloxanes is based on elemental analysis, and IR, 1H, 13C{1H}, 29Si{1H} and 31P{1H} NMR spectroscopic studies. In addition, ESI-TOF mass spectrometric studies were carried out.  相似文献   

17.
All the steps of the proposed technique, from the synthesis of single-source precursors to the preparation of CoPd and CoPt nanoalloys, are described. The double complex salts (DCS) [M(NH3)4][Co(C2O4)2(H2O)2]·2H2O (M = Pd, Pt), which were synthesized by mixing solutions containing [M(NH3)4]2+ cations and [Co(C2O4)2(H2O)2]2− anions, have been used as precursors. The salts obtained were characterized by IR spectroscopy, thermal analysis, XRD and single crystal X-ray diffraction. The prepared compounds crystallize in the monoclinic (space group I2/m, M = Pd) and orthorhombic (space group I222, M = Pt) crystal systems. Thermal decomposition of the salts in helium or hydrogen atmosphere at 200-600 °C results in the formation of nanoalloys powders (random solid solution Co0.50Pd0.50 and chemically ordered CoPt). The size of the bimetallic particles varied from 5 to 20 nm. Order-disorder structural transformations in Co0.50Pt0.50 nanoalloys were studied. The magnetic properties of both chemically disordered Co0.50Pd0.50 and ordered CoPt clusters have also been measured.  相似文献   

18.
[D(CH2CH2S)2]M(XCH2CH2Y) 1-8 (M = Ge, Sn; D = O, S; X = Y = S, O and X = S, Y = O) spirocycles were synthesized to analyze the influence of the metal center replacement and the donor atom hardness on the strength of the transannular bond and the hypercoordination phenomena. The compounds were characterized by IR, Raman and NMR (1H, 13C and 119Sn) spectroscopy, E.I. mass spectrometry and elemental analysis. The molecular and crystal structures of compounds 3, 4, 6-8 and Ge(SCH2CH2S)2 (9) were obtained by X-ray diffraction analyses. They all exhibit five-coordinate central atoms due to transannular metal coordination (M?D) except 4, which displays a dimeric structure formed by the fusion of two five-membered rings resulting in a cyclic-distannoxane unit, {[O(CH2CH2S)2]Sn(SCH2CH2O)}2. The relationship between the nature of the metal center and the differences found between the two germanium and tin series are discussed.  相似文献   

19.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

20.
Product and kinetic studies on the reactions of hydrogen chloride in methanol solution with the substrates (CH3)3SnM(CH3)3 (M = Sn; Ge and Si) show that both SnM and SnCH3 cleavage reactions occur, at similar rates, and are followed by other reactions giving complex but explicable mixtures of products. Similar behaviour is observed for trifluoroacetolysis in carbon tetrachloride solution, and some intermediates are observable. Trifluoroacetolysis of (CH3)3SnC(CH3)3 results in exclusive SnCH3 cleavage. The very slow apparent solvolysis in acetic acid solution is thought to involve reaction with dissolved oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号