首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Complexes [MHCpBz(CO)2(PR3)] (R = CH3, M = Mo (1); M = W (2); R = Ph, M = Mo (3); CpBz = C5(CH2Ph)5) were prepared by thermal decarbonylation of the corresponding [MHCpBz(CO)3] in the presence of trimethyl- or triphenyl-phosphine. In solution the NMR spectra of all compounds show the presence of cis and trans isomers that interconvert at room temperature. In the solid state the molecular structures obtained for compounds 1 and 2 correspond to the trans isomers, while for 3 the cis isomer is present.The electrochemistry of [MoHCpBz(CO)2(PMe3)] (1), [MoHCpBz(CO)3] (5), [WHCpBz(CO)3] (6), [WCpBz(CO)3]2 (7), and [MCpBz(CO)3(CH3CN)]BF4 (8), is described. The cleavage of M-H bonds takes place upon oxidation or reduction. Cations [MCpBz(CO)2L(CH3CN)]+ form in solvent-assisted M-H bond breaking upon oxidation of [MHCpBz(CO)2L] (L = PMe3, CO). Reduction of [MHCpBz(CO)3] gives [MCpBz(CO)3] and H2. The presence of one PMe3 ligand lowers the reduction potential and precludes the observation of reduction waves.  相似文献   

2.
Complexes M(CCCSiMe3)(CO)2Tp′ (Tp′ = Tp [HB(pz)3], M = Mo 2, W 4; Tp′ = Tp [HB(dmpz)3], M = Mo 3) are obtained from M(CCCSiMe3)(O2CCF3)(CO)2(tmeda) (1) and K[Tp′].Reactions of 2 or 4 with AuCl(PPh3)/K2CO3 in MeOH afforded M{CCCAu(PPh3)}(CO)2Tp′ (M = Mo 5, W 6) containing C3 chains linking the Group 6 metal and gold centres.In turn, the gold complexes react with Co33-CBr)(μ-dppm)(CO)7 to give the C4-bridged {Tp(OC)2M}CCCC{Co3(μ-dppm)(CO)7} (M = Mo 7, W 8), while Mo(CBr)(CO)2Tp and Co33-C(CC)2Au(PPh3)}(μ-dppm)(CO)7 give {Tp(OC)2Mo}C(CC)2C{Co3(μ-dppm)(CO)7} (9) via a phosphine-gold(I) halide elimination reaction. The C3 complexes Tp′(OC)2MCCCRu(dppe)Cp (Tp′ = Tp, M = Mo 10, W 11; Tp′ = Tp, M = Mo 12) were obtained from 2-4 and RuCl(dppe)Cp via KF-induced metalla-desilylation reactions. Reactions between Mo(CBr)(CO)2Tp and Ru{(CC)nAu(PPh3)}(dppe)Cp (n = 2, 3) afforded {Tp(OC)2Mo}C(CC)n{Ru(dppe)Cp} (n = 2 13, 3 14), containing C5 and C7 chains, respectively. Single-crystal X-ray structure determinations of 1, 2, 7, 8, 9 and 12 are reported.  相似文献   

3.
Syntheses of [Me3SbM(CO)5] [M = Cr (1), W (2)], [Me3BiM(CO)5] [M = Cr (3), W (4)], cis-[(Me3Sb)2Mo(CO)4] (5), [tBu3BiFe(CO)4] (6), crystal structures of 1-6 and DFT studies of 1-4 are reported.  相似文献   

4.
A range of new small bite-angle diphosphine complexes, [M(CO)4{X2PC(R1R2)PX2}] (M = Mo, W; X = Ph, Cy; R1 = H, Me, Et, Pr, allyl, R2 = Me, allyl), have been prepared via elaboration of the methylene backbones in [M(CO)4(X2PCH2PX2)] as a result of successive deprotonation and alkyl halide addition. When X = Ph it proved possible to replace both methylene protons but for X = Cy only one substitution proved possible. This is likely due to the electron-releasing nature of the cyclohexyl groups but may also be due to steric constraints. Attempts to prepare the bis(allyl) substituted complex [Mo(CO)4{Ph2PC(allyl)2PPh2}] were only moderately successful. The crystal structures of nine of these complexes are presented.  相似文献   

5.
Density functional calculations were performed on bonding and structural features of [(ηn-BH4)TM(CO)4] (n = 1, 2, 3; TM = Cr, Mo) complexes. Calculations show that the ground state is bidentate which is in good agreement with experimental results. It has been found that the bridge and terminal hydrogen atoms will interchange by two pathways: (i) twist of BH4 about one of the bridge B-H and (ii) twist of BH4 about one of the terminal B-H. The molecular orbital calculations and natural bond orbital methodologies for different isomers of these complexes have been evaluated. The final results indicate that case (i) is more preferable relative to another case.  相似文献   

6.
A photochemical study of allyl iron complexes of the type, (η3-2-R-C3H4)Fe(CO)(NO)(X) (R = H or Cl; X = CO or PPh3) is presented. These compounds were studied in solid matrixes at 20 K, and at room temperature, by a combination of laser flash at 355 nm and steady-state photolysis. The predominant photochemical process for these compounds is loss of a CO ligand. In addition, exhaustive irradiation of (η3-2-R-C3H4)Fe(CO)(NO)(PPh3) with λexc > 300 nm provided evidence for a haptotropic shift of the allyl group from η3 to η1 coordination.  相似文献   

7.
A facile synthesis of the novel selenium-capped trimolybdenum and tritungsten ring carbonyl clusters [Se2M3(CO)10]2− (M = Mo, 1; W, 4) have been achieved. The selenium-capped trimolybdenum cluster compound [Et4N]2[Se2Mo3(CO)10] ([Et4N]2[1]) can be obtained from the reaction of the trichromium cluster compound [Et4N]2[Se2Cr3(CO)10] with 4 equiv. of Mo(CO)6 in refluxing acetone. On the other hand, when [Et4N]2[Se2Cr3(CO)10] reacted with 4 equiv. of W(CO)6 in refluxing acetone, the planar cluster compound [Et4N]2[Se2W4(CO)18] ([Et4N]2[3]) was isolated, which could further transform to the tritungsten cluster compound [Et4N]2[Se2W3(CO)10] ([Et4N]2[4]) in good yield. Alternatively, clusters 1 and 4 could be formed from the reactions of the monosubstituted products [Et4N]2[Se2Cr2M(CO)10] (M = Mo; W, [Et4N]2[2]) with 3 equiv. of M(CO)6 in acetone, respectively. Complexes 1-4 are fully characterized by IR, 77Se NMR spectroscopy, and single-crystal X-ray analysis. Clusters 1, 2, and 4 are isostructural and each display a trigonal bipyramidal structure with a homometallic M3 ring (M = Mo, 1; W, 4) or a heterometallic Cr2W ring that is further capped above and below by μ3-Se atoms. Further, the intermediate planar complex 3 exhibits a Se2W2 square with each Se atom externally coordinated to one W(CO)5 group. This paper describes a systematic route to a series of selenium-capped trimetallic carbonyl clusters and the formation and the structural features of the resultant clusters are discussed.  相似文献   

8.
New compounds of the type M2(H2F3)(HF2)2(AF6) with M = Ca, A = As and M = Sr, A = As, P) were isolated. Ca2(H2F3)(HF2)2(AsF6) was prepared from Ca(AsF6)2 with repeated additions of neutral anhydrous hydrogen fluoride (aHF). It crystallizes in a space group P4322 with a = 714.67(10) pm, c = 1754.8(3) pm, V = 0.8963(2) nm3 and Z = 4. Sr2(H2F3)(HF2)2(AsF6) was prepared at room temperature by dissolving SrF2 in aHF acidified with AsF5 in mole ratio SrF2:AsF5 = 2:1. It crystallizes in a space group P4322 with a = 746.00(12) pm, c = 1805.1(5) pm, V = 1.0046(4) nm3 and Z = 4. Sr2(H2F3)(HF2)2(PF6) was prepared from Sr(XeF2)n(PF6)2 in neutral aHF. It crystallizes in a space group P4122 with a = 737.0(3) pm, c = 1793.7(14) pm, V = 0.9744(9) nm3 and Z = 4. The compounds M2(H2F3)(HF2)2(AF6) gradually lose HF at room temperature in a dynamic vacuum or during being powdered for recording IR spectra or X-ray powder ray diffraction patterns. All compounds are isotypical with coordination of nine fluorine atoms around a metal center forming a distorted Archimedian antiprism with one face capped. This is the first example of the compounds in which H2F3 and HF2 anions simultaneously bridge metal centers forming close packed three-dimensional network of polymeric compounds with low solubility in aHF. The HF2 anions are asymmetric with usual F?F distances of 227.3-228.5 pm. Vibrational frequency (ν1) of HF2 is close to that in NaHF2. The anion H2F3 exhibits unusually small F?F?F angle of 95.1°-97.6° most probably as a consequence of close packed structure.  相似文献   

9.
Nickel and copper complexes containing 1,3,5-benzenetricarboxylic acid, with a combination of selected N-donor ligands and Schiff bases, of the composition Ni3(bimz)6(btc)2 · 12H2O (1), Ni3(btz)9(btc)2 · 12H2O (2), Ni2(L1)(btc) · 7H2O (3), Ni3(L2)2(Hbtc) · 9H2O (4), Ni2(L3)(btc) · 4H2O (5), Cu2(L4)(btc) · 7H2O (6), [Cu3(pmdien)3(btc)](ClO4)3 · 6H2O (7) and [Cu3(mdpta)3(btc)](ClO4)3 · 4H2O (8); H3btc = 1,3,5-benzenetricarboxylic acid, bimz = benzimidazole, btz = 1,2,3-benztriazole, L1 = 2-[(phenylimino)methyl]phenol, L2 = N,N′-bis-(salicylidene)propylenediamine, L3 = 2-{[(2-nitrophenyl)methylene]amino}phenol, L4 = 2-[(4-methoxy-phenylimino)methyl]phenol, pmdien = N,N,N′,N″,N″-pentamethyldiethylenetriamine, mdpta = N,N-bis-(3-aminopropyl)methylamine, have been synthesized. The complexes have been studied by elemental analysis, IR, UV–Vis spectroscopies, magnetochemical and conductivity measurements and selected compounds also by thermal analysis. The crystal and molecular structure of complex 8 was solved. The complex is trinuclear with btc3−-bridge. The coordination polyhedron around each copper atom can be described as a distorted square with a CuON3 chromophore formed by one oxygen atom of carboxylate and three nitrogen atoms of mdpta. The magnetic properties of 8 have been studied in the 1.8–300 K temperature range revealing a very weak antiferromagnetic exchange interaction with J = −0.56 cm−1 for g = 2.13(9). The antimicrobial activities against selected strains of bacteria were evaluated. It was found that only complex 5 is able to inhibit the growth of Staphylococcus strains.  相似文献   

10.
11.
Refinement of the X-ray crystal structures of Pr[M(CN)6] · 5H2O (M = Cr, Fe, Co) enables their space group to be reassigned to P63/mmc. Spectral characteristics are reported for M = Cr and the distinction between the pentahydrate and tetrahydrate series is clearly made from assignments of the infrared spectra.  相似文献   

12.
Pathways for the rearrangement and decomposition of the (CH3)3M+ (M = Si, Ge, Sn) ions are traced by the detection of stationary points on the potential energy surfaces of these ions by the B3LYP/aug-cc-pVDZ method. All three systems have stationary points similar in geometry, but very different in energy, especially on going from M = Si, Ge on the one hand to M = Sn on the other. In addition to previously found isomers of (CH3)3Si+ which have their analogs in the two other systems, “side-on” complexes with ethane and propane were revealed for all cations studied. Predicted changes in transition state and dissociation energies on going from M = Si to M = Sn allowed us to rationalize the trends for the relative decomposition product yields observed in mass-spectrometry studies of these cations.  相似文献   

13.
[Ni(H2O)6][Cu3Cl8(H2O)2] · (15-crown-5)2 · 2H2O can be conveniently prepared by the interaction of NiCl2 · 6H2O, CuCl2 · 2H2O and 15-crown-5 in water. The X-ray crystal structure reveals an ionic complex involved in a hydrogen-bonded two dimensional network with the [Ni(H2O)6]2+ and [Cu3Cl8(H2O)2]2− ions sandwiched between the 15-crown-5 macrocycles. The magnetic susceptibility data (4–300 K) and magnetisation isotherms (2–5.5 K; 0–5 T) are best interpreted in terms of intra-trimer ferromagnetic coupling within the [Cu3Cl8(H2O)2]2− moieties, with J ∼ 6 cm−1, and antiferromagnetic coupling between the trimers, the latter mediated by H-bonding pathways. Comparisons are made to other reported quaternary ammonium salts of [Cu3Cl8]2− and [Cu3Cl12]6−, most of which display structures that involve close stacking of such Cu(II) trimers, rather than being of the present isolated, albeit H-bonded, types.  相似文献   

14.
All the steps of the proposed technique, from the synthesis of single-source precursors to the preparation of CoPd and CoPt nanoalloys, are described. The double complex salts (DCS) [M(NH3)4][Co(C2O4)2(H2O)2]·2H2O (M = Pd, Pt), which were synthesized by mixing solutions containing [M(NH3)4]2+ cations and [Co(C2O4)2(H2O)2]2− anions, have been used as precursors. The salts obtained were characterized by IR spectroscopy, thermal analysis, XRD and single crystal X-ray diffraction. The prepared compounds crystallize in the monoclinic (space group I2/m, M = Pd) and orthorhombic (space group I222, M = Pt) crystal systems. Thermal decomposition of the salts in helium or hydrogen atmosphere at 200-600 °C results in the formation of nanoalloys powders (random solid solution Co0.50Pd0.50 and chemically ordered CoPt). The size of the bimetallic particles varied from 5 to 20 nm. Order-disorder structural transformations in Co0.50Pt0.50 nanoalloys were studied. The magnetic properties of both chemically disordered Co0.50Pd0.50 and ordered CoPt clusters have also been measured.  相似文献   

15.
The Lewis acid/base adducts [MCl4{NH(R)(SiR′3)}] (M = Zr, Hf; R = tBu, R′ = Me; R = SiR′3 = SiMe3, SiMe2H) were synthesized by the 1:1 reaction of MCl4 with NH(R)(SiR′3) in dichloromethane solution at room temperature. The decomposition of [MCl4{NH(R)(SiR′3)}] proceeds with the elimination of R′3SiCl, as shown by thermogravimetric analysis. Pyrolysis of the compounds at 620 °C under inert conditions (N2, vacuum) afforded powders of composition [ClMN] or [Cl2MNH]. Preliminary low pressure chemical vapour deposition experiments show that [MCl4{NH(R)(SiR′3)}] deposits thin films of metal nitride contaminated with metal oxide.  相似文献   

16.
Three complexes of composition [CrL(X)3], where L = 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine and X = Cl, N3, NCS are synthesized. They are characterized by IR, UV–Vis, fluorescence, EPR spectroscopic, and X-ray crystallographic studies. Structural studies reveal that the Cr(III) ion is coordinated by three N atoms of L in a meridional fashion. The three anions occupy the other three coordination sites completing the mer-N3Cl3 (1) and mer-N3N3 (2 and 3), distorted octahedral geometry. The Cr–N2 has a shorter length than the Cr–N1 and Cr–N3 distances and the order Cr–N(NCS) < Cr–N(N3) < Cr–Cl is observed. They exhibit some of the d–d transitions in the visible and intra-ligand transitions in the UV regions. The lowest energy d–d transition follows the trend [CrLCl3] < [CrL(N3)3] < [CrL(NCS)3] consistent with the spectrochemical series. In DMF, they exhibit fluorescence having π → π character. All the complexes show a rhombic splitting as well as zero-field splitting (zfs) in X-band EPR spectra at 77 K.  相似文献   

17.
The synthesis and properties of heterobimetallic Ti-M complexes of type {[[Ti](μ-η12-CCSiMe3)][M(μ-η12-CCSiMe3)(CO)4]} (M = Mo: 5, [Ti] = (η5-C5H5)2Ti; 6, [Ti] = (η5-C5H4SiMe3)2Ti; M = W: 7, [Ti] = (η5-C5H5)2Ti; 8, [Ti] = (η5-C5H4SiMe3)2Ti) and {[Ti](μ-η12-CCSiMe3)2}MO2 (M = Mo: 13, [Ti] = (η5-C5H5)2Ti; 14, [Ti] = (η5-C5H4SiMe3)2Ti). M = W: 15, [Ti] = (η5-C5H5)2Ti; 16, [Ti] = (η5-C5H4SiMe3)2Ti) are reported. Compounds 5-8 were accessible by treatment of [Ti](CCSiMe3)2 (1, [Ti] = (η5-C5H5)2Ti; 2, [Ti] = (η5-C5H4SiMe3)2Ti) with [M(CO)5(thf)] (3, M = Mo; 4, M = W) or [M(CO)4(nbd)] (9, M = Mo; 10, M = W; nbd = bicyclo[2.2.1]hepta-2,5-diene), while 13-16 could be obtained either by the subsequent reaction of 1 and 2 with [M(CO)3(MeCN)3] (11, M = Mo; 12, M = W) and oxygen, or directly by oxidation of 5-8 with air. A mechanism for the formation of 5-8 is postulated based on the in-situ generation of [Ti](CCSiMe3)((η2-CCSiMe3)M(CO)5), {[Ti](μ-η12-CCSiMe3)2}-M(CO)4, and [Ti](μ-η12-CCSiMe3)((μ-CCSiMe3)M(CO)4) as a result of the chelating effect exerted by the bis(alkynyl) titanocene fragment and the steric constraints imposed by the M(CO)4 entity.The molecular structure of 5 in the solid state were determined by single crystal X-ray diffraction analysis. In doubly alkynyl-bridged 5 the alkynides are bridging the metals Ti and Mo as a σ-donor to one metal and as a π-donor to the other with the [Ti](CCSiMe3)2Mo core being planar.  相似文献   

18.
To study the Ru-M interactions and their effects on 31P NMR, complexes [Ru(CO)3(Ph2Ppy)2] (py = pyridine) (1) and [Ru(CO)3(Ph2Ppy)2MCl2] (M = Zn, 2; Cd, 3; Hg, 4) were calculated by density functional theory (DFT) PBE0 method. Moreover, the PBE0-GIAO method was employed to calculate the 31P chemical shifts in complexes. The calculated 31P chemical shifts in 1-3 follow 2 > 3 > 1 which are consistent to experimental results, proving that PBE0-GIAO method adopted in this study is reasonable. This method is employed to predict the 31P chemical shift in designed complex 4. Compared with 1, the 31P chemical shifts in 2-4 vary resulting from adjacent Ru-M interactions. The Ru → M or Ru ← M charge-transfer interactions in 2-4 are revealed by second-order perturbation theory. The strength order of Ru → M interactions is the same as that of the P-Ru → M delocalization with Zn > Cd > Hg, which coincides with the order of 31P NMR chemical shifts. The interaction of Ru → M, corresponding to the delocalization from 4d orbital of Ru to s valence orbital of M2+, results in the delocalization of P-Ru → M, which decreases the electron density of P nucleus and causes the downfield 31P chemical shifts. Except 2, the back-donation effect of Ru ← M, arising from the delocalization from s valence orbital of M2+ to the valence orbital of Ru, is against the P-Ru → M delocalization and results in the upfield 31P chemical shifts in 4. Meanwhile, the binding energies indicate that complex 4 is stable and can be synthesized experimentally. However, as complex [Ru(CO)3(Ph2Ppy)2HgCl]+5 is more stable than 4, the reaction of 1 with HgCl2 only gave 5 experimentally.  相似文献   

19.
Theoretical studies on the known trinuclear cobalt carbonyl derivatives ECo3(CO)9 (E = CH, CF, P, As) predict structures with carbonyl groups bridging each edge of the Co3 triangle in contrast with experiment where structures with all terminal carbonyl groups are found in all cases. However, the energy differences are predicted to be rather small ranging from 4 ± 2 kcal/mol for FCCo3(CO)9 to 10 ± 3 kcal/mol for AsCo3(CO)9. The global minima for the unsaturated ECo3(CO)n (n = 8, 7, 6) derivatives generally have two (for n = 8) or three (for n = 7 and 6) carbonyl groups bridging the edges of the Co3 triangle. However, structures with all terminal carbonyl groups are also found in all cases as well as higher energy structures in which one of the carbonyl groups bridges all three cobalt atoms. The fluoromethinyl derivatives FCCo3(CO)n (n = 9, 8, 7) are anomalous since their unbridged structures or structures with a carbonyl group bridging all three cobalt atoms are closer in energy to the doubly or triply bridged global minima than is the case for the other ECo3(CO)n derivatives.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号