首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of tris(hydroxymethyl)phosphine with excess cinnamaldehyde in CH3OH or CD3OD, followed using NMR, proceeds via several phosphorus-containing intermediates, multiple transformations of organic parts, and with the solvent H/D isotope effect on products. In both solvents, one CH2OH group of tris(hydroxymethyl)phosphine is readily replaced by the cinnamaldehyde moiety to give the primary product, a 1,3-oxaphosphorinane derivative. Slower replacement of the second CH2OH group leads to a mixture of aliphatic and heterocyclic phosphine intermediates in a ratio of ~4:1 in CH3OH and ~1:1 in CD3OD; both intermediates contain alcohol and aldehyde groups and convert rapidly into intra- and intermolecular hemiacetals. The hemiacetals of the aliphatic phosphine rearrange further into an unsymmetrical trialkylphosphine oxide, whereas the hemiacetals of the heterocyclic phosphine react with the third mole of cinnamaldehyde to replace the third CH2OH group of tris(hydroxymethyl)phosphine. All intermediates and products are formed as mixtures of stereoisomers.  相似文献   

2.
Experimental and theoretical rate coefficients are determined for the first time for the reaction of 4‐hydroxy‐3‐hexanone (CH3CH2C(O)CH(OH)CH2CH3) with OH radicals as a function of temperature. Experimental studies were carried out using two techniques. Absolute rate coefficients were measured using a cryogenically cooled cell coupled to the pulsed laser photolysis‐laser‐induced fluorescence technique with temperature and pressure ranges of 280‐365 K and 5‐80 Torr, respectively. Relative values of the studied reaction were measured under atmospheric pressure in the range of 298‐354 K by using a simulation chamber coupled to a FT‐IR spectrometer. In addition, the reaction of 4H3H with OH radicals was studied theoretically by using the density functional theory method over the range of 278‐350 K. Results show that H‐atom abstraction occurs more favorably from the C–H bound adjacent to the hydroxyl group with small barrier height. Theoretical rate coefficients are in good agreement with the experimental data. A slight negative temperature dependence was observed in both theoretical and experimental works. Overall, the results are deliberated in terms of structure–reactivity relationship and atmospheric implications.  相似文献   

3.
A series of α‐keto‐β‐diimine nickel complexes (Ar‐N = C(CH3)‐C(O)‐C(CH3)=N‐Ar)NiBr2; Ar = 2,6‐R‐C6H3‐, R = Me, Et, iPr, and Ar = 2,4,6‐Me3‐C6H3‐) was prepared. All corresponding ligands are unstable even under an inert atmosphere and in a freezer. Stable copper complex intermediates of ligand synthesis and ethyl substituted nickel complex were isolated and characterized by X‐ray. All nickel complexes were used for the polymerization of ethene, propylene, and hex‐1‐ene to investigate their livingness and the extent of chain‐walking. Low‐temperature propene polymerization with less bulky ortho‐substituents was less isospecific than the one with isopropyl derivative. Propene stereoblock copolymers were prepared by iPr derivative combining the polymerization at low temperature to prepare isotactic polypropylene (PP) block and at a higher temperature, supporting chain‐walking, to obtain amorphous regioirregular PP block. Alternatively, a copolymerization of propene with ethene was used for the preparation of amorphous block. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2440–2449  相似文献   

4.
1‐(β‐d ‐Erythrofuranosyl)cytidine, C8H11N3O4, (I), a derivative of β‐cytidine, (II), lacks an exocyclic hydroxy­methyl (–CH2OH) substituent at C4′ and crystallizes in a global conformation different from that observed for (II). In (I), the β‐d ‐erythrofuranosyl ring assumes an E3 conformation (C3′‐exo; S, i.e. south), and the N‐glycoside bond conformation is syn. In contrast, (II) contains a β‐d ‐ribofuranosyl ring in a 3T2 conformation (N, i.e. north) and an anti‐N‐glycoside linkage. These crystallographic properties mimic those found in aqueous solution by NMR with respect to furan­ose conformation. Removal of the –CH2OH group thus affects the global conformation of the aldofuranosyl ring. These results provide further support for S/syn–anti and N/anti correlations in pyrimidine nucleosides. The crystal structure of (I) was determined at 200 K.  相似文献   

5.
Cis‐[Zn(3,5‐dinitrobenzoato)2(1,10‐phenanthroline)2]·CH3CH2OH features unidentate and cis‐disposed 3,5‐dinitrobenzoate ligands and chelating 1,10‐phenanthroline ligands so that a distorted octahedral N4O2 coordination geometry results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
NMR spectra of the synthesized azo dyes, 5‐arylazo‐pyrimidine (1H,3H,5H)‐2,4,6‐triones (5a–g), 1,3‐dimethyl‐5‐arylazo‐pyrimidine (1H,3H,5H)‐2,4,6‐triones (6a–g), and 5‐arylazo‐2‐thioxo‐pyrimidine (1H,3H,5H)‐4,6‐diones (7a–g) were studied in (CD3)2SO (three drops of CD3OD were added into solutions of the dyes in two different concentrations). All dyes showed intramolecular hydrogen bonding. Dyes 5a–7a showed bifurcated intramolecular hydrogen bonds. Tautomeric behaviours of some of N‐methylated azo dyes (6a‐g) were studied in two different concentrations. The solvent–substrate proton exchange of dyes 5a–d, 6a and 7a–e was examined in presence of three drops of CD3OD. The dyes which were soluble in (CD3)2SO containing CD3OD showed isotopic splitting (β‐isotope effect) in the 13C NMR spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Norbornene polymerizations were carried out using nickel(II) bromide complexes CH{C(R)NAr}2NiBr ( 1 , R = CH3, Ar = 2, 6 ? iPr2C6H3; 2 , R = CH3, Ar = 2, 6‐Me2C6H3; 3 , R = CF3, Ar = 2, 6 ? iPr2C6H3; 4 , R = CF3, Ar = 2, 6‐Me2C6H3) in the presence of methylaluminoxane. Compound 3 is the most active norbornene polymerization catalyst of all the nickel complexes tested. The activity of theses catalysts increases with increases in steric bulk of the substituents on the aryl rings. The electronic nature of the ligand backbone also affects the activity. The resulting polynorbornenes are vinyl type by IR and NMR analyses. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Synthesis and Crystal Structure of the Heterobimetallic Diorganotindichloride (FcN, N)2SnCl2 (FcN, N: (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2}) The heterobimetallic title compound [(FcN, N)2SnCl2] ( 1 ) was obtained by the reaction of [LiFcN, N] with SnCl4 in the molar ratio 1:1 in diethylether as a solvent. The two FcN, N ligands in 1 are bound to Sn through a C‐Sn σ‐bond; the amino N atoms of the side‐chain in FcN, N remain uncoordinated. The crystals contain monomeric molecules with a pseudo‐tetrahedral coordination at the Sn atom: Space group P21/c; Z = 4, lattice dimensions at —90 °C: a = 9.6425(2), b = 21.7974(6), c = 18.4365(4) Å, β = 100.809(2)°, R1obs· = 0.051, wR2obs· = 0.136.  相似文献   

9.
Protocatechuic acid esters (= 3,4‐dihydroxybenzoates) scavenge ca. 5 equiv. of radical in alcoholic solvents, whereas they consume only 2 equiv. of radical in nonalcoholic solvents. While the high radical‐scavenging activity of protocatechuic acid esters in alcoholic solvents as compared to that in nonalcoholic solvents is due to a nucleophilic addition of an alcohol molecule at C(2) of an intermediate o‐quinone structure, thus regenerating a catechol (= benzene‐1,2‐diol) structure, it is still unclear why protocatechuic acid esters scavenge more than 4 equiv. of radical (C(2) refers to the protocatechuic acid numbering). Therefore, to elucidate the oxidation mechanism beyond the formation of the C(2) alcohol adduct, 3,4‐dihydroxy‐2‐methoxybenzoic acid methyl ester ( 4 ), the C(2) MeOH adduct, which is an oxidation product of methyl protocatechuate ( 1 ) in MeOH, was oxidized by the DPPH radical (= 2,2‐diphenyl‐1‐picrylhydrazyl) or o‐chloranil (= 3,4,5,6‐tetrachlorocyclohexa‐3,5‐diene‐1,2‐dione) in CD3OD/(D6)acetone 3 : 1). The oxidation mixtures were directly analyzed by NMR. Oxidation with both the DPPH radical and o‐chloranil produced a C(2),C(6) bis‐methanol adduct ( 7 ), which could scavenge additional 2 equiv. of radical. Calculations of LUMO electron densities of o‐quinones corroborated the regioselective nucleophilic addition of alcohol molecules with o‐quinones. Our results strongly suggest that the regeneration of a catechol structure via a nucleophilic addition of an alcohol molecule with a o‐quinone is a key reaction for the high radical‐scavenging activity of protocatechuic acid esters in alcoholic solvents.  相似文献   

10.
The synthesis of a novel series of twelve 4‐(trihalomethyl)dipyrimidin‐2‐ylamines, from the cyclo‐condensation reaction of 4‐(trichloromethyl)‐2‐guanidinopyrimidine, with β‐alkoxyvinyl trihalomethyl ketones, of general formula: X3C‐C(O)‐C(R2)=C(R1)‐OR, where: X = F, Cl; R = Me, Et, ‐(CH2)2‐, ‐(CH2)3‐; R1 = H, Me; R2 = H, Me, ‐(CH2)2‐, ‐(CH2)3‐, is reported. The reactions were carried out in acetonitrile under reflux for 16 hours, leading to the dipyrimidin‐2‐ylamines in 65‐90% yield. Depending on the substituents of the vinyl ketone, tetrahydropyrimidines or aromatic pyrimidine rings were obtained from the cyclization reaction. When X = Cl, elimination of the trichloromethyl group was observed during the cyclization step. The structure of 4‐(trihalomethyl)dipyrimidin‐2‐ylamines was studied in detail by 1H‐, 13C‐ and 2D‐nmr spectroscopy.  相似文献   

11.
Two representatives of a new type of β‐amino acids, carrying two functionalized side chains, one in the 2‐ and one in the 3‐position, have been prepared stereoselectively: a β‐Ser derivative with an additional CH2OH group in the 2‐position (for β‐peptides with better water solubility; Scheme 2) and a β‐HCys derivative with an additional CH2SBn group in the 2‐position (for disulfide formation and metal complexation with the derived β‐peptides; Scheme 3). Also, a simple method for the preparation of α‐methylidene‐β‐amino acids is presented (see Boc‐2‐methylidene‐β‐HLeu‐OH, 8 in Scheme 3). The two amino acids with two serine or two cysteine side chains are incorporated into a β‐hexa‐ and two β‐heptapeptides ( 18 and 23/24 , resp.), which carry up to four CH2OH groups. Disulfide formation with the β‐peptides carrying two CH2SH groups generates very stable 1,2‐dithiane rings in the centre of the β‐heptapeptides, and a cyclohexane analog was also prepared (cf. 27 in Scheme 6). The CD spectra in H2O clearly indicate the presence of 314‐helical structures of those β‐peptides ( 18 , 23 , 24 , 27b ) having the `right' configurations at all stereogenic centers (Fig. 2). NMR Measurements (Tables 1 and 2, and Fig. 4) in aqueous solution of one of the new β‐peptides ( 24 ) are interpreted on the assumption that the predominant secondary structure is the 314‐helix, a conformation that has been found to be typical for β‐peptides in MeOH or pyridine solution, according to our previous NMR investigations.  相似文献   

12.
The catalytic activities of nine neutral nickel and palladium α‐acetylide complexes [M= (C=CR)2(PR'3)2, M=Ni, Pd; R = Ph, CH2OH, CH2OOCH, CH2OOCPh, CH2OOCPhOH‐o; R' = Ph, Bu] are compared. Among them, Ni(C‐CPh)2(PBu3)] shows the highest catalytic activity and gives the polystyrene with high molecular weight (Mw= 188800) and a syndio‐rich microstructure. The catalytic behavior of transition metal acetylides is related to metal, phosphine, and alkynyl ligands bonded to the metal atoms.  相似文献   

13.
The mechanism of the gas-phase reaction OH with CH2=C(CH3)CH2OH (2-methyl-2-propen-1-ol) has been elucidated using high-level ab initio method, i.e., CCSD(T)/6-311++g(d,p)//MP2(full)/6-311++g(d,p). Various possible H-abstraction and addition–elimination pathways are identified. The calculations indicate that the addition–elimination mechanism dominates the OH+MPO221 reaction. The addition reactions between OH radicals and CH2=C(CH3)CH2OH begin with the barrierless formation of a pre-reactive complex in the entrance channel, and subsequently the CH2(OH)C(CH3)CH2OH (IM1) and the CH2C(OH)(CH3)CH2OH (IM2) are formed by OH radicals’ electrophilic additions to the double bond. IM1 can easily rearrange to IM2 via a 1,2-OH migration. Subsequently, rearrangement of IM2 to form (CH3)2C(OH)CH2O (IM11) followed by dissociation to HCHO + (CH3)2COH (P21) is the most favorable pathway. The decomposition of IM2 to CH2OH + CH2=C(OH)CH3 (P16) is the secondary pathway. The other pathways are not expected to play any important role in forming final products.  相似文献   

14.
Photolysis of [Ir(η2-coe)H2(TpMe2)] ( 1 ; TpMe2=hydrotris(3,5-dimethylpyrazolyl)borato, coe=(Z)-cyclooctene) in CH3OH gives a mixture of [IrH4(TpMe2)] ( 4 ) and [Ir(CO)H2(TpMe2)] ( 5 ) in a ca. 1 : 1 ratio. Mass-spectral analysis of the distillate of the reaction mixture at the end of the photolysis shows the presence of coe. When pure CD3OD is used as solvent, the deuteride complexes [IrD4(TpMe2)] ((D4)- 4 ) and [Ir(CO)D2(TpMe2)] ((D2)- 5 ) are obtained. Also the photolysis of [Ir(η4-cod)(TpMe2)] ( 3 ) (cod=cycloocta-1,5-diene) gives 4 and 5 . A key feature of this photoreaction is the intramolecular dehydrogenation of cod with formation of cycloocta-1,3,5-triene, detected by mass spectroscopy at the end of the photolysis. Labeling experiments using CD3OD show that the hydrides in 4 originate from MeOH. When 13CH3OH is used as solvent, [Ir(13CO)H2(TpMe2)] is formed demonstrating that CH3OH is the source of the CO ligand. The observation that the photolysis of both 1 and 3 give the same product mixture is attributed to the formation of a common intermediate, i.e., the coordinatively unsaturated 16e species {IrH2(TpMe2)}.  相似文献   

15.
The structure of the title compound, [U(C14H9N3O2)O2(CH3OH)2]·CH3OH, is the first to be reported for an actinide complex including triazole ligands. The UVI atom exhibits a pentagonal–bipyramidal NO6 coordination environment, involving two axial oxide ligands [U=O = 1.766 (3) and 1.789 (3) Å], four equatorial O atoms [U—O = 2.269 (3)–2.448 (3) Å] from the ligand and the two coordinated methanol molecules, and one equatorial N atom [U—N = 2.513 (4) Å] from the ligand. In the crystal structure, the complex molecules are linked via intermolecular N—H...O and O—H...O hydrogen bonds to form a two‐dimensional structure.  相似文献   

16.
A thio­semicarbazone derivative, 2‐acetyl­pyridine 4‐phenyl­thio­semicarbazone, was prepared and complexed to Lewis acids, Sn(CH3)2X2, X = Cl and Br. The products, [SnX(C14H13N4S)(CH3)2], were characterized by single‐crystal X‐ray diffraction, and IR, NMR and Mössbauer spectroscopies. They are isomorphous and crystallize in the monoclinic space group P21/n. The structure determination revealed discrete neutral complexes with the SnIV atom in a distorted octahedral coordination geometry, with the halogeno ligand and the thio­semicarbazone derivative in the equatorial plane and the methyl groups in axial positions.  相似文献   

17.
The Ser, Cys, and His side chains play decisive roles in the syntheses, structures, and functions of proteins and enzymes. For our structural and biomedical investigations of β‐peptides consisting of amino acids with proteinogenic side chains, we needed to have reliable preparative access to the title compounds. The two β3‐homoamino acid derivatives were obtained by Arndt–Eistert methodology from Boc‐His(Ts)‐OH and Fmoc‐Cys(PMB)‐OH (Schemes 2–4), with the side‐chain functional groups' reactivities requiring special precautions. The β2‐homoamino acids were prepared with the help of the chiral oxazolidinone auxiliary DIOZ by diastereoselective aldol additions of suitable Ti‐enolates to formaldehyde (generated in situ from trioxane) and subsequent functional‐group manipulations. These include OH→OtBu etherification (for β2hSer; Schemes 5 and 6), OH→STrt replacement (for β2hCys; Scheme 7), and CH2OH→CH2N3→CH2NH2 transformations (for β2hHis; Schemes 9–11). Including protection/deprotection/re‐protection reactions, it takes up to ten steps to obtain the enantiomerically pure target compounds from commercial precursors. Unsuccessful approaches, pitfalls, and optimization procedures are also discussed. The final products and the intermediate compounds are fully characterized by retention times (tR), melting points, optical rotations, HPLC on chiral columns, IR, 1H‐ and 13C‐NMR spectroscopy, mass spectrometry, elemental analyses, and (in some cases) by X‐ray crystal‐structure analysis.  相似文献   

18.
In the crystal structures of both title compounds, [1,3‐bis(2‐hydroxybenzylidene)‐2‐methyl‐2‐(2‐oxidobenzylideneaminomethyl)propane‐1,3‐diamine]nickel(II) [2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methyl‐1,3‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine]nickel(II) chloride methanol disolvate, [Ni(C26H25.5N3O3)]2Cl·2CH4O, and [1,3‐bis(2‐hydroxybenzylidene)‐2‐methyl‐2‐(2‐oxidobenzylideneaminomethyl)propane‐1,3‐diamine]zinc(II) perchlorate [2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methyl‐1,3‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine]zinc(II) methanol trisolvate, [Zn(C26H25N3O3)]ClO4·[Zn(C26H26N3O3)]·3CH4O, the 3d metal ion is in an approximately octahedral environment composed of three facially coordinated imine N atoms and three phenol O atoms. The two mononuclear units are linked by three phenol–phenolate O—H...O hydrogen bonds to form a dimeric structure. In the Ni compound, the asymmetric unit consists of one mononuclear unit, one‐half of a chloride anion and a methanol solvent molecule. In the O—H...O hydrogen bonds, two H atoms are located near the centre of O...O and one H atom is disordered over two positions. The NiII compound is thus formulated as [Ni(H1.5L)]2Cl·2CH3OH [H3L is 1,3‐bis(2‐hydroxybenzylidene)‐2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methylpropane‐1,3‐diamine]. In the analogous ZnII compound, the asymmetric unit consists of two crystallographically independent mononuclear units, one perchlorate anion and three methanol solvent molecules. The mode of hydrogen bonding connecting the two mononuclear units is slightly different, and the formula can be written as [Zn(H2L)]ClO4·[Zn(HL)]·3CH3OH. In both compounds, each mononuclear unit is chiral with either a Δ or a Λ configuration because of the screw coordination arrangement of the achiral tripodal ligand around the 3d metal ion. In the dimeric structure, molecules with Δ–Δ and Λ–Λ pairs co‐exist in the crystal structure to form a racemic crystal. A notable difference is observed between the M—O(phenol) and M—O(phenolate) bond lengths, the former being longer than the latter. In addition, as the ionic radius of the metal ion decreases, the M—O and M—N bond distances decrease.  相似文献   

19.
The title compound, ethyl 2‐hydroxy‐4‐oxo‐2‐phenyl­cyclo­hexane­carboxyl­ate, C15H18O4, was obtained by a Michael–Aldol condensation and has the cyclo­hexanone in a chair conformation. The attached hydroxy, ethoxy­carbonyl and phenyl groups are disposed in β‐axial, β‐equatorial and α‐­equatorial configurations, respectively. An intermolecular hydrogen bond, with an O?O distance of 2.874 (2) Å, links the OH group and the ring carbonyl. Weak intermolecular C—H?O=C (ester and ketone), O—H?O=C (ketone) and C—H?OH hydrogen bonds exist.  相似文献   

20.
Abstract

Phosphonium zwitterions of the known type R3P+CH(Ar)CH2CO2 ? (II) are obtained as a racemic mixture in moderate yield via a 1:1 reaction of cinnamic acids (Ar = phenyl, or substituted phenyl) with [HO(CH2)3]3P in acetone at room temperature under Ar. The products are characterized by elemental analysis, 31P{1H}-, 1H-, and 13C{1H}-NMR spectroscopies, and mass spectrometry, although they contain a minor coproduct formed via neutralization of the positive and negative charges of II with the respective acid and phosphine reactants (see Experimental Section). In CD3OD, the monodeuterated salts R3P+CH(Ar)CH(D)CO2 ? are formed as a mixture of diastereomers with d.r. values of ~2 to 8, depending on substituent groups present in the organic acid; in these studies, 2-HO-cinnamic acid is the most reactive, and β-methylcinnamic acid is the least reactive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号